
CILINDROS MECANICOS SIN VASTAGO

DESPLAZAMIENTO CON HUSILLO A BOLAS CMH DESPLAZAMIENTO CON CORREA DENTADA CMK

CON TRANSMISION A HUSILLO, CMH

CMH: Cilindro sin vástago cuyo carro o carros se deslizan por el desplazamiento de la tuerca o tuercas de un husillo a bolas al que se encuentran unidas.

A los carros de los cilindros CMH, se les incorpora una tuerca a bolas (M), o tuerca trapecial (TR). Se deslizan en un rodamiento lineal prismático, que a su vez, está montado sobre un perfil tubular de aluminio extrusionado.

Todo el conjunto queda totalmente cerrado. Cuando las cargas, momentos de giro etc. son importantes se puede montar más de un carro deslizante, o añadir guías prismáticas complementarias HD y (pág.7) conseguir las condiciones técnicas necesarias. Las múltiples combinaciones de montaje de esos cilindros entre sí, los convierte en elementos imprescindibles al pretender mover con control de posicion, uno o varios ejes. Transforman movimientos de entrada rotativos en movimientos de salida lineales. Son módulos, que permiten ser incorporados de muy distintas formas a cualquier tipo de máquina.

Nota:

En la página 12 presentamos el mismo cilindro con transmisión a correa dentada, ref.CMK

- ¿Dónde se emplea un cilindro sin vástago, y qué trabajos realiza?
- Donde se necesiten fuerzas lineales, por ejemplo:
 - -Como accionamiento para avances
 - -Accionamiento para transportes
 - -Accionamiento de cabezales para robots industriales.
 - -Accionamiento para estructuras internas de máquinas.
- -Donde se requieran lograr movimientos en uno o mas ejes.
 - -Posicionado del material en sierras, prensas, cizallas, etc.
 - -Posiciones en cadena con piezas largas (perforación de regletas-guía, etc.)
 - -Como accionamiento en ejes lineales con avances y velocidades controla-
- -Donde se quieran lograr movimientos en uno o mas ejes, en:
 - -Accionamientos bidimensionales (mesas en cruz) en ejecución simple y en ejecución paralela.
 - -Sistemas tridimensionales de coordenadas.
 - -Manipuladores con control de posicionado.

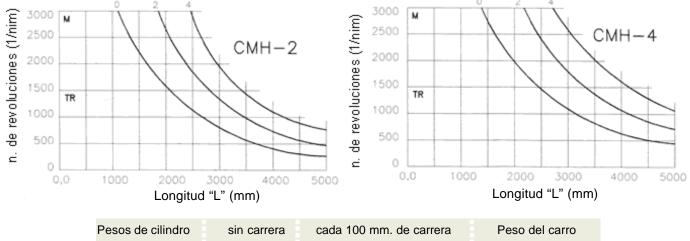
CARACTERISTICAS TECNICAS

LONGITUD L

LOS LIMITES ESTAN IMPUESTOS POR:

CMH2 hasta 6.000 mm. CMH4 hasta 6.000 mm.

- -Longitud del husillo
- -Velocidad de husillo
- -Precisión de posicionamiento longitudinal
- -Lunetas interiores (ver diagrama SA).


PRECISION

M Precisión de paso 0,05/300 mm. Precisión de posicionamiento 0,05mm TR Precisión de paso 0,20/300 mm. Precisión de posicionamiento 0,20mm

Revoluciones, velocidad, aceleración. Lunetas interior S.A.

	Revoluciones max. M TR		Velocidad max.	, 2		Pasos Husillo	Diámetro Husillo	Cantidad max.
	М	TR	m/min	M	TR	mm	mm	S.A.
CMH2	3.000	1.500	150	10	5	5,20,50	20	4
CMH4	3.000	1.500	120	10	5	5,10,20,40	32	4

La longirud L determina la cantidad de S.A. para mantener las velocidades por debajo del margen crítico

Pesos de cilindro	sin carrera	cada 100 mm. de carrera	Peso del carro
CMH2	7 kg.	1,2 kg.	2,5 kg.
CMH4	16 kg.	1,8 kg.	6 kg.

MANTENIMIENTO, CLASE DE PROTECCION

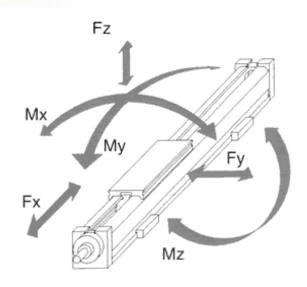
El cilindro sale del montaje engrasado y listo para su servicio

- 1. Rodamiento fijo + rodamiento libre
- + guia de deslizamiento

Engrase original: Klüber ISOFLEX TOPAS. L152 - NLGI 2 DIN 51818.

Engrase posterior cada 400 - 500 horas de servicio, con grasa para rodamiento saponificada con litio.

2. Perfil de banda: Engrase original: Klüber POLYLUB LA 12 -NLGI 2 DIN 51818.


Engrase posterior cada 400 - 500 horas.

En caso de altas velocidades se empleará, NLGI 1 y en caso de grandes esfuerzos NLGGI3. La clase de protección responde al VDE- IP44.

CAPACIDAD DE CARGA Y MOMENTOS REFERIDOS AL EJE CENTRAL DEL CILINDRO CMH

Tamaño Ejecución	M000	CMH2 1-HD	2-HD	M000	CMH4 1-HD	2-HD
Fuerzas (N) Fx (5,10) Fx (20,40,50,TR) Fy Fz Momento (Nm) Mx My Mz	2500 1500 500 650 250 700 700	2500 1500 750 1200 500 1100 1100	2500 1500 950 1950 750 1500	6000 4000 1000 1300 500 1200 1200	6000 4000 1500 2200 1000 1800 1800	6000 4000 2000 3200 1400 2500 2500

000=Ejecución base.

1-HD=Con guía suplementaria exterior.

2HD=Con doble guía suplementaria exterior.

Ejecucion para cargas pesadas.

MOMENTO DE GIRO+GRADO DE RENDIMIENTO

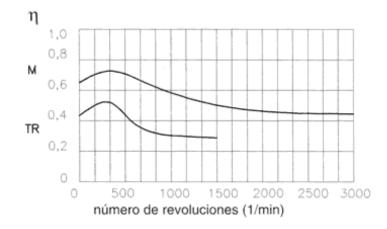
$$Md = \frac{Ftotal \times P \times v}{2000 \times \P \times n} (Nm)$$

F total = F acción + Fa (N).

F acción = Fuerza resultante de todas las fuerzas que tiene que vencer el accionamiento.

F acción = $Fx + (Fz \times 0,2)$ (N).

Fa = Fuerza de aceleración (N).


 $Fa(N) = Fz (kg) \times a (m / seg^2)$

P = Paso en mm.

v = Factor de seguridad > 1. Estándar entre 2 y 3

n = En función del número de revoluciones y del tipo de tuerca.

Pasos largos mejoran el grado de rendimiento.

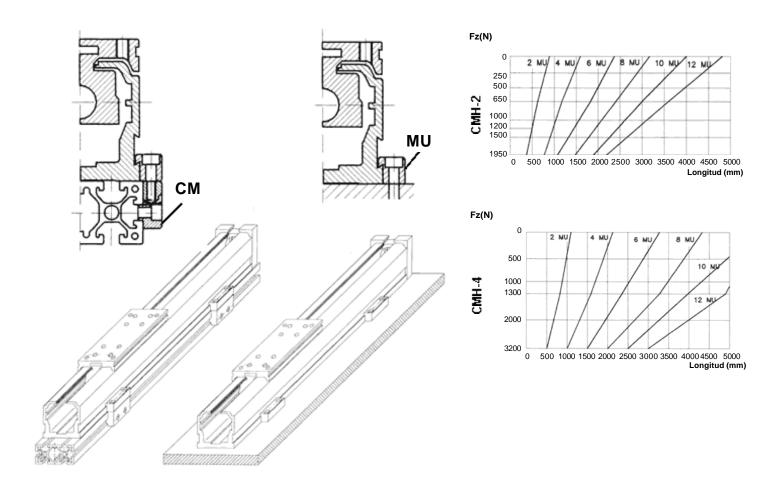
El momento de giro que se produce en la fase de aceleración es:

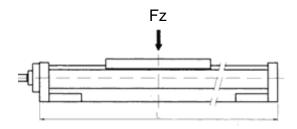
$$Ma = \frac{m \times a \times P \times v}{2000 \times \P \times n} \quad (Nm)$$

 $a = aceleración \ (m/seg^2) \\ m = (masa \ del \ carro) + (masa \ sobre \ el \ carro) \ (kg).$

El Momento Total es entonces: $M_{TOT} = M_d + M_a$

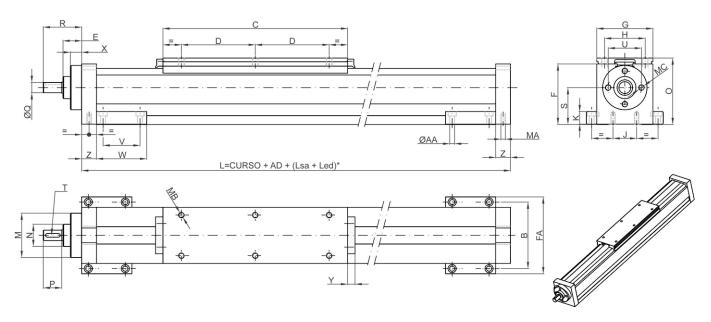
Tabla de momentos de giro en función del número de revoluciones n=150 y n=1500 (r.p.m.).(Valores medios sin carga).


El momento de giro no debería sobrepasar 1,5 veces el valor dado en la tabla para 150 r.p.m. (en montaje).


			Mom	ento de giro	Md (Nm)
	Ejecución	R.P.M.		M	
CMH2	Paso M000	150 1500	5 0.50 0.82	20 0.59 0.99	50 1.80 2.80
CMH4	Paso M000	150 1500	10 4.40 6.40	40 5.80 8.50	

REGLETAS DE FIJACION MU

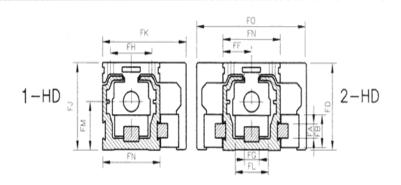
POTENCIA A PARTIR DEL MONETO DE GIRO Y DE LA VELOCIDAD


$$Pa = \frac{\text{M total} \times \text{n}}{9550} \text{ (kW)}$$

M total = Nm n = rpm Pa = Potencia necesaría

Velocidad (rpm)	500	1000 TR	1500	2000	2500 M	3000	
Momento de giro (Nm)			Poten	dia (kV	V)		
0	0	0	0	l 0	0	0	
0,5	0.03	0,06	0,08	0,11	0,14	0,16	
1	0.06	0,11	0,16	0,21	0,27	0,32	-2
1,5	0,09	0,16	0,24	0,32	0,40	0,48	CMH-2
2	0,11	0,21	0,32	0,42	0,53	0,63	ਹ
2,5	0,14	0,27	0,40	0,53	0,67	0,79	
3	0,10	0,32	0,48	0,63	0,80	0,95	
3,5	0,19	0,37	0,56	0,74	0,93		
4	0,21	0,42	0,63	0,84	1,05		
4,5	0,27	0,47	0,72	0,95		1,42	
5	0,21	0,53	0,80	1,05		1,58	4
5,5	0,00	0,58	0,88	1,16	1,45	1,74	±
6 7	0,0_	0,63	0,95	1,26	1,58	1,89	CMH-4
	0,0.	0,74	1,11	1,47	1,84	2,21	_
8 9	0, 12	0,84	1,26	1,68	2,10 2,37	2,52	
9 10	0, 50	0,95 1,05	1,42 1,58	1,89	2,63	2,84 3,15	
12,5	0 07 [1,32	1,98	2,63		3,13	
15	0.00	1,58	2,37	3,15	3,29		_
17,5	0.05	1,84	2,76	3,68	0,01	J	
20	4 05	2,10	3,15	0,00	ı		
25	1 22	2,63	3,94				
30	1.58	3,15		1			
35	1 2/	3,68					
40	21						
45	2,37						
50	2 63 1						
				'			

M000 EJECUCION BASE

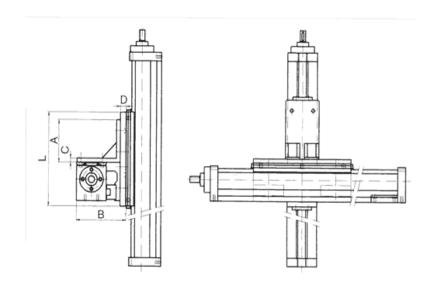


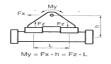
DIMENSIONES

	Ls	а	Α	В	С		D	Е	F		G	Н	J	K	М	N	0	Р
Modelo	0 2	4																
CMH-2	0 60	120	160	90	250		100	25	8	2	76	55	32	17	60	30 h6	90	25
CMH4	0 170	340	260	120	350		150	33	11	0,5	106	75	75	17	90	50 h6	125 ⁺⁰ _{-0,5}	40
	Q	R	S	Т		U	V	W	X	Υ	Z	AA	A)	MA	MB	MC	FA
Modelo CMH2 CMH4	14 h6 20 h6	52 75	50 70	5x20 6x35x	-	45 72		68 68	15 20			6,5 6,5	32 42		//6x15 10x20	M8x12 M8x17		5 104 0 134

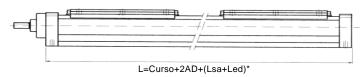
M400 CILINDRO PARA CARGAS PESADAS

Modelo	FA	FB	FD	FF	FG	FH	FJ	FK	FL	FM	FN
CMH2_1-HD	15 15	34 34		38 53	20 23	55 75	90 125 ⁺⁰ _{-0,5}	110,5 140,5	44 48	50 70	76 106
Modelo	FA	FB	FD	FF	FG	FH	FJ	FL	FD	FN	FO
CIVII IZ_Z-I ID	15 15	34 34	89 123,5	38 53	20 23	55 75	90 125 ⁺⁰ _{-0,5}	44 48	50 70	76 106	145 175

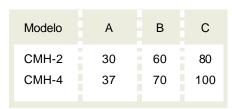

*LSA : Lunetas de apoyo (cuando la longitud lo requiera). LED : Espacio de seguridad, para micros, etc.

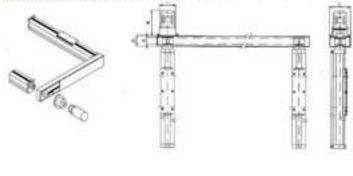


M600 **CILINDROS DOS CORDENADAS EJECUCION X-Z**


Modelo	Α	В	С		
CMH-2	100	125,5	9,5		
CMH-4	160	160,5	15		
Modelo	D	L			
CMH-2	15	250×	250		
CMH-4	20	350×350			

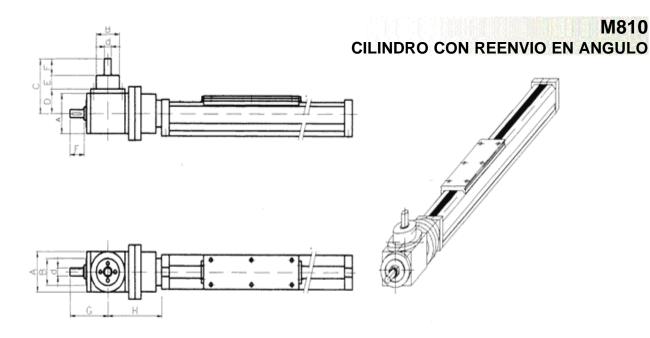
M610 CILINDRO CON CARRO SUPERIOR SUELTO O CON **ROSCA A DERECHA-IZQUIERDA**

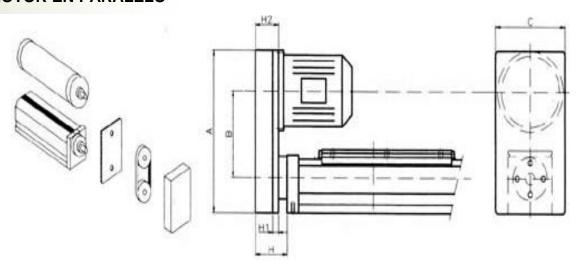

		Lsa		Α	D
Modelo	0	2	4		
CMH-2	0	50	100	32	20
CMH-4	0	90	180	42	20



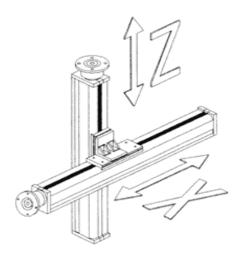
*LSA: Lunetas de apoyo (cuando la longitud lo requiera).

LED: Espacio de seguridad, para micros, etc.

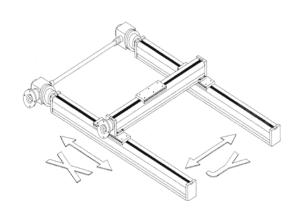

M620 CILINDRO EN PARALELO CON TRASMISION POR CORREA

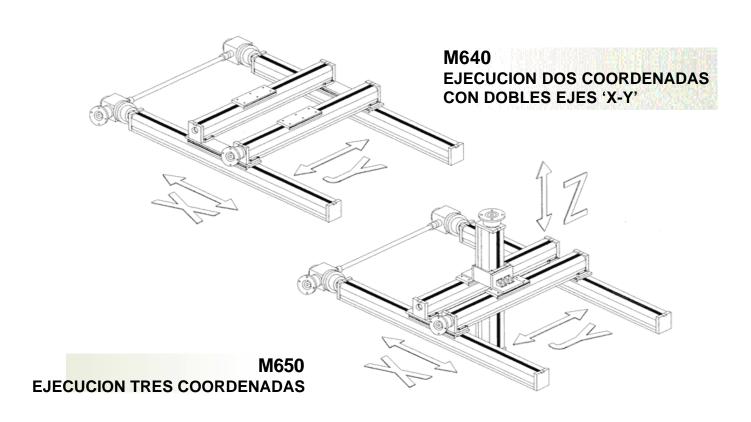


M810


Modelo A	В	С	D	Е	F	G	Н	d	Reenvío
CMH-2 90		122						18	
CMH-4 90	60	122	55	30	35	98	146	18	VH1

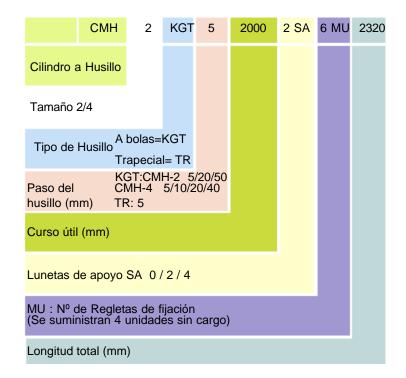
M820 **CILINDRO CON SOPORTE PARA MOTOR EN PARALELO**

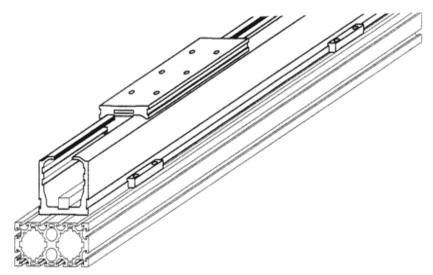

Modelo	Α	В	С	Н	H1	H2
CMH-2 CMH-4		145 160	150 180	85 100		70 80



M600 EJECUCION DOS COORDENADAS

M630 EJECUCION DOS COORDENADAS CON DOBLE EJE X





EJEMPLO DE DESIGNACION DE UNA UNIDAD DE TRANSLACION A HUSILLO

Cilindro a husillo, tamaño 2, husillo a bolas laminado de paso 5, curso útil de 2000 mm, 2 lunetas de apoyo, con 6 regletas de fijación y longitud total 2320 mm..

CILINDRO RAPIDO SIN VASTAGO

CON TRANSMISION A CORREA DENTADA CMK

Las unidades lineales, o cilindros mecánicos sin vástago, con desplazamiento en base a husillos a bolas, fueron desarrollados por Neff, hace ya veinte años y han obtenido entretanto numerosas patentes y galardones

NIASA presenta la solución del cilindro, también sin vástago, en el que el carro o puente de fuerza se desliza sobre bolas y la transmisión es realizada a través de una correa dentada con hilos de acero, que nos permite desplazamientos de hasta 5 metros por segundo.

Con los cilindros rápidos CMK hemos conseguido desplazar un carro a la velocidad de un cilindro neumático, pero con la ventaja de un cilindro neumático, pero con la ventaja de un total control de las velocidades de desplazamiento y posicionamiento.

Esta ejecución, sin la precisión del cilindro con husillos a bolas, aporta al mercado grandes soluciones, para casos de posicionadores con tolerancias de parada de 0,3 mm., suficientes, en caso de manipulación, dispositivos de tope para sierras y cizallas, paletizadores, desplazamientos de cabezales o equipos de pintura y un sin número de aplicaciones, donde el posicionamiento no exija más tolerancia de la señalada.

CILINDROS MECANICOS SIN VASTAGO CARACTERISTICAS TECNICAS DEL CILINDRO CMK

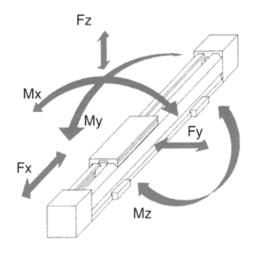
LONGITUD L

CMK-3, CMK-5

hasta 7.000 mm

PRECISIÓN DE **POSICIONAMIENTO**

CMK-3, CMK-5

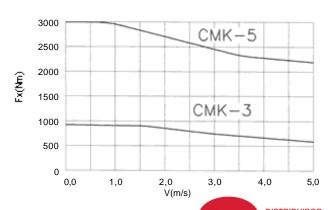

hasta 0,3 mm

	v. max	a.max	avance por	Diámetro	Tipo		Pesos	
			revolucion	prim. Polea	correa	curso 0	cada 100mm	patín
	m/sg	m/sg²	mm	mm		kg	kg	kg
CMK-3	3	20	120	38,20	23-ATL-5	7,5	1	2
CMK-5	5	20	200	63,66	40-ATL-10	17	1,4	5,5

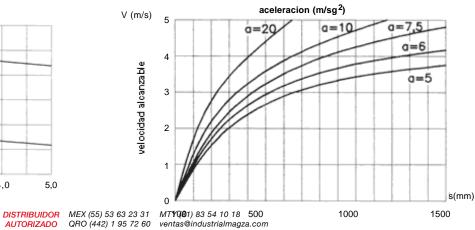
MANTENIMIENTO Y LUBRICACION

El CMK requiere una lubricación similar a los rodamientos a bolas. Se preferirá siempre una lubricación con grasa. En condiciones normales de trabajo, el período de engrase no debe ser superior a 200 horas de funcionamiento. Engrase original: Klüber ISOFLEX TOPAS. L152 - DIN 51818

CARGAS Y MOMENTOS



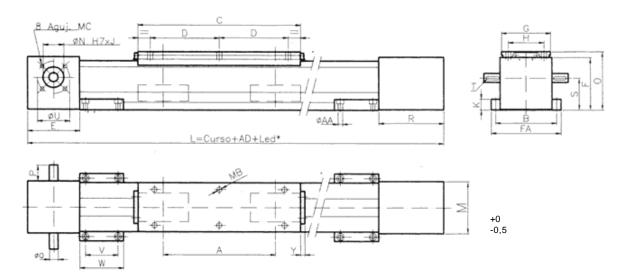
Tamaño		CMK-3		CMK-5					
Ejecución	BASE	1-HD	2-HD	BASE	1-HD	2-HD			
Fuerzas [N]									
Fx	820	820	820	3000	3000	3000			
Fy	500	750	950	1000	1500	2000			
Fz	650	1200	1950	1300	2200	3200			
Momento[Nm]									
Mx	250	500	700	500	1000	1400			
My	700	1100	1500	1200	1800	2500			
Mz	700	1100	1500	1200	1800	2500			


PAR DE GIRO EN VACIO (Nm)

	CMK-3	CMK-5
a 150 rpm	1,2	6,8
a 500 rpm	2,5	8,2
a 1500 rpm	3,2	10,5

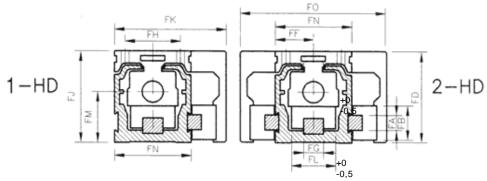
DIAGRAMA FUERZA/VELOCIDAD

DIAGRAMA DE VELOCIDAD/RECORRIDO



ventas@industrialmagza.com

EJECUCION BASE



DIMENSIONES

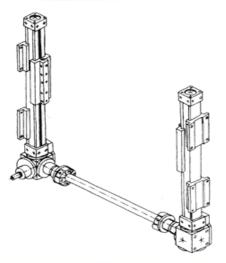
Modelo	Α	в с	D	E	F		G	Н	J	K	М	N	0	Р	Q	R
		90 250 120 350														
Modelo	S	Т	U	V	W	Υ	AA	AD	ı	МВ	МС	FA	Paso correa	Nº dient		Avance vuelta
CMK-3 CMK-5		5x20x3 6x30x3,5												24 20		120 200

M400

CILINDROS PARA CARGAS PESADAS

DIMENSIONES

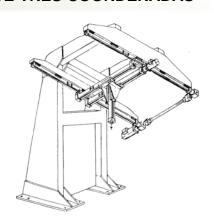
Modelo	FD	FF	FH	FJ	FK	FM	FN
CMK-3_1-HD CMK-5_1-HD	89 123,5	38 53	55 75	90 125 ⁺⁰ -0,5	110,5 140	50 70	76 106
Modelo	FD	FF	FH	FJ	FM	FN	FO
CMK-3_2-HD CMK-5_2-HD	89 123,5	38 53	55 75	90 125 ⁺⁰ _{-0,5}	50 70	76 106	145 175


EJEMPLO DE DESIGNACION DE UNA UNIDAD DE TRANSLACION A CORREA

Cilindro a correa, tamaño 3, avance por vuelta de 120 mm, curso útil de 1000 mm con 4 regletas de fijación y longitud total de 1.450 mm.

EJEMPLOS DE MONTAJE

MONTAJE DE DOS CILINDROS EN PARALELO PARA MOVIMIENTO DE ELEVACION


EJEMPLO DE CILINDROS DE DOS COORDENADAS

EJEMPLO DE CILINDROS PARALELOS PARA MOVIMIENTO SIMULTANEO

EJEMPLO DE CILINDROS DE TRES COORDENADAS

