

Clutches \& Brakes

Thomson - the Choice for Optimized Motion Solutions

Often the ideal design solution is not about finding the fastest, sturdiest, most accurate or even the least expensive option. Rather, the ideal solution is the optimal balance of performance, life and cost.

The Best Positioned Supplier of Mechanical Motion Technology

Thomson has several advantages that makes us the supplier of choice for motion control technology.

- Thomson own the broadest standard product offering of mechanical motion technologies in the industry.
- Modified versions of standard product or white sheet design solutions are routine for us.
- Choose Thomson and gain access to more than 70 years of global application experience in industries including packaging, factory automation, material handling, medical, clean energy, printing, automotive, machine tool, aerospace and defense.
- As part of Fortive Corporation, we are financially strong and unique in our ability to bring together control, drive, motor, power transmission and precision linear motion technologies.

A Name You Can Trust

A wealth of product and application information as well as 3D models, software tools, our distributor locator and global contact information are available at www.thomsonlinear.com. Talk to us early in the design process to see how Thomson can help identify the optimal balance of performance, life and cost for your next application. And, call us or any of our 2000+ distribution partners around the world for fast delivery of replacement parts.

The Fortive Business System

The Fortive Business System (FBS) was established to increase the value we bring to customers. It is a mature and successful set of tools we use daily to continually improve manufacturing operations and product development processes. FBS is based on the principles of Kaizen which continuously and aggressively eliminate waste in every aspect of our business. FBS focuses the entire organization on achieving breakthrough results that create competitive advantages in quality, delivery and performance - advantages that are passed on to you. Through these advantages, Thomson is able to provide you faster times to market as well as unsurpassed product selection, service, reliability and productivity.

Local Support Around the Globe

Deltran Clutches \& Brakes

Introduction

Building Our Business On a Strong Foundation

Thomson has a long history of manufacturing quality clutches and brakes. Our roots are firmly planted in brand names such as Deltran, American Precision Industries (API) and Warner PSI, combining more than 100 years of combined manufacturing experience.
In 2000, the Genuine Wrap SpringTM ${ }^{\text {TM }}$ and electromagnetic friction products were combined under the Deltran name within the Thomson family. As we merged the manufacturing of these product lines into one facility in Amherst, NY, we focused on keeping the engineering expertise at the forefront while practicing The Fortive Business System (FBS) of continuous improvement.
Today, our clutch and brake products are working in a wide range of applications specific to factory automation, material handling, automotive, aviation, defense, aerospace, medical, office machine, robotics and servo motor manufacturing industries. These products set the solid foundation for the broad range of standard and custom products currently available to our customers.

Our modern Amherst, NY, facility is ISO 9001:2008 and AS9100-D certified for its design, manufacturing and assembly of motion control devices. Our brake and clutch manufacturing experience, technological know-how and commitment to bring our customers a quality product, delivered on time, every time are some of the reasons why Thomson is the best choice for your next motion control product.

For customer service and application support, please call us at 1-540-633-3400. For other contact information, please see the back of this catalog.

Using Our Clutches and Brakes Catalog

Finding just the right clutch or brake product can be a daunting task. The selection process hinges on the application with many variables to take into consideration. Often times there are several brake or clutch options that might do the job-the key is finding the best solution for your application.
This catalog contains several aides to assist in the selection process.

- CLUTCH AND BRAKE TECHNOLOGIES—This catalog contains clutch and brake information for Wrap Spring and Electromagnetic Friction Clutches and Brakes. Pages 6-13 offer operation, design and application examples of both technologies. The printed tabs offer a quick way to find the technology and products you need. Engineering guidelines appear at the end of each section.
THE GENUINE WRAP SPRING product section begins on page 15.
THE FRICTION product section begins on page 87.
- SELECTION BY MOTION TYPE-The chart on pages $4 \& 5$ categorizes our clutches and brakes by type of motion. The basic motions are START, INDEX, SLIP, STOP and HOLD. Each of these motion types are noted by an icon on the left side of this chart. As you browse through this catalog, you will see these same motion icons in the top header of the product pages. If you know that your application requires a specific motion, this chart may be a helpful place to start your brake and clutch selection.
- SELECTION BY CAPABILITY-The chart on page 5 will help you to determine which technology may work best in your application: Wrap Spring or Friction. Your application may have specific requirements of a brake or clutch such as torque, speed, accuracy, etc. This chart may help you determine whether The Genuine Wrap Spring products or one of our Friction Clutches or Brakes will be best suited for your operation.

Clutches \& Brakes

Table of Contents

Introduction / Using This Catalog 1
Product Overview 3
Product Selection Chart—By Motion Type 4
Product Selection Chart—By Capability 5
Wrap Spring
Operation \& Design Principles 6
Applications 7
Friction
Operation \& Design Principles 10
Applications 11
Application Worksheet 14
THE GENUINE WRAP SPRINGTM CLUTCHES AND CLUTCH/BRAKE PACKAGES 15
How to Select 16
CLUTCH/BRAKE PACKAGES
Super CB Series
Solenoid Actuated. 18
Standard CB Series
Solenoid Actuated 30
CLUTCHES
SAC Series
Solenoid Actuated 46
PSI Series
Basic Wrap Spring 54
ACCESSORIES
Dust Covers 60
Stop Collars 61
Actuators 62
ENGINEERED PRODUCTS
CLUTCHESDL Series
Dura-LIFE Magnetically Actuated 64
MAC Series
Magnetically Actuated 66
SP Series
Solenoid Actuated 70
BDNB Series
Bi-Directional No Back 72
ENGINEERING GUIDELINES
Selection Considerations 74
Magnetically Actuated Clutch Operation 77
Questions \& Answers 78
CB Spring Differential Adjustments 80
Mounting Requirements 81
Application Analysis. 83
Disassembly and Assembly Instructions 85
FRICTION CLUTCHES \& BRAKES 87
How to Select 88
CLUTCHES \& CLUTCH COUPLINGS
CS \& CSC Series
Shaft-Mounted Clutches/Couplings 90
MCS Series
Metric Shaft-Mounted Clutches 95
BRAKES
BF Series
Power-on Brakes. 97
MBF Series Metric Power-on Brakes 102
SB Series
Power-off Spring Set Brakes 105
FSB Series Power-off Spring Set Brakes 111
RAB Series Brakes
Permanent Magnet Power-off Brakes 112
PMB Series
Power-off Spring Set Brakes 114
MBRP Series
Metric Power-off Soring Set Brakes 118
ENGINEERED PRODUCTS
TC/TCR Series Clutches \& Brakes
Tooth Power-on \& Power-off 120
LBRP Series Brakes 122
MDB/MDC Series Clutches \& Brakes Multiple Disc 122
Custom Assemblies 122
Custom Clutch \& Brake Capabilities 124
ENGINEERING GUIDELINES
Design Considerations 126
Mounting Requirements 128
Glossary of Terms 129
Conversion Chart 131

Clutches \& Brakes

Product Overview

Wrap Spring Products

THE GENUINE WRAP SPRING CLUTCH/BRAKE PACKAGES

CB Series combination clutch/brakes accurately start and stop loads driven by a continuously rotating power source. CB units operate from a single AC or DC pulse, stopping the load within $\pm 1 / 2^{\circ}$ noncumulative at speeds up to 1800 RPM depending on size. Each unit is pre-engineered and pre-assembled for easy installation. Super CB clutch/brakes provide 3 to 5 times longer life.

THE GENUINE WRAP SPRING CLUTCHES

Two clutch series include the Solenoid Actuated SAC Series and the mechanically actuated, basic wrap spring PSI Series clutch.

THE GENUINE WRAP SPRING ACCESSORIES

Several accessories are offered for The Genuine Wrap Spring products, including dust cover enclosures; heavy duty actuator and controls. The heavy duty actuator is used with the PSI-6 Series clutches. A plug-in clutch/brake control designed for operation of D-frame, AC or DC wrap spring clutches and brakes is available.

THE GENUINE WRAP SPRING ENGINEERED PRODUCTS

Engineered products are specially designed to solve specific and unique application requirements. The products shown are the result of years of experience in providing innovative solutions for applications, including paper feed drives, agriculture equipment, copiers, robotics, etc. These solutions are now available as "engineered" products, which include the DL, MAC, SP and BDNB.

Friction Products

FRICTION CLUTCHES \& CLUTCH COUPLINGS

Electromagnetic clutches and clutch couplings are available in six frame sizes and offered as shaft-mounted or flange -ounted models. The CS and CSC Series provide an efficient, electrically switchable link between a motor and a load. These models offer full corrosion resistant, rotating components designed for low inertia and minimal drag, zero backlash and integral long-life bearings.

FRICTION BRAKES

Electromagnetic power-on (BF) brakes provide an efficient, switchable means of stopping and/or holding a load. Spring-set electromagnetic power-off (SB, FSB, PMB \& MBRP) brakes provide a safe, efficient means of stopping and/or holding a load in the absence of power.

PERMANENT MAGNET POWER-OFF BRAKES

Permanent magnet power-off brakes (RAB) provide zero backlash stopping and/or holding of a load in the absence of power. While the field (electromagnet) is fixed and prevented from rotating, the output hub assembly is secured to the shaft. In the absence of power, the fixed and rotating components are engaged, thus stopping and/or holding the load. When the coil is energized, rotating components are disengaged, thus allowing the shaft to freely rotate.

FRICTION ENGINEERED PRODUCTS

Engineered products are specially designed to solve specific and unique application requirements. The products shown are the result of innovative solutions we provided for applications such as document handling, copiers, ATM machines, dispensing machines, robotics and military aerospace actuators. The solutions we provided are now available as "engineered" products in this section, including Tooth Power-on and Power-off (TC/TCR), Metric Clutches (MCS) and Metric Brakes (MBF).

Clutches \& Brakes

Product Selection

CLUTCHES \& BRAKES SELECTION CHART-BY MOTION TYPE							
Motion Type	Type	Model/Sizes	Max Torque lb-in (Nm)	Bore Range	Max RPM	Actuation Method	Page
Starting START	Wrap Spring Clutch	DL-33	30 (3.4)	English: $1 / 4-5 / 16^{\prime \prime}$ Metric: 6-8 mm	1200	DC	65
	Wrap Spring Clutch	MAC-30, $45,45 \mathrm{w} / \mathrm{BC}$	150 (16)	English: $1 / 4-5 / 8^{\prime \prime}$ Metric: 6-16 mm	1200	DC	67
Motion icons are shown at the top of each product page to make selecting easier.	Friction Clutch	$\begin{aligned} & \text { CS-11, 15, 17, 22, } 26 \\ & \text { CSC-11, 15, 17, 22, } 26 \end{aligned}$	125 (14.2)	English: $1 / 4-1^{\prime \prime}$ Metric: $8-35 \mathrm{~mm}$	5000	DC	92
	Friction Clutch	TC-19, TCR-19	250 (28.2)	English: $3 / 8-1 / 2^{\prime \prime}$	5000	DC	121
	Friction Clutch	MCS	Custom Engineered Product - Consult Factory				95
	Friction Clutch	MDC	Custom Engineered Product - Consult Factory				122
Indexing	Wrap Spring Clutch	PSI-2, 4, 5, 6, 8	2500 (282.5)	English: $1 / 4-1 \frac{1}{2}{ }^{\prime \prime}$ Metric: 6-40 mm	1800	Mechanical	56
	Wrap Spring Clutch	SAC-2, 4, 5, 6	500 (56.5)	English: $1 / 4-1^{\prime \prime}$ Metric: 6-25 mm	1800	AC or DC Solenoid; AIR	48
	Wrap Spring Clutch/Brake	$\begin{aligned} & \text { Super CB } \\ & \text { CB-5, 6, } 7,8,10 \end{aligned}$	5,000 (565)	English: $1 / 2-13 / 4^{\prime \prime}$ Metric: $12-45 \mathrm{~mm}$	750	AC or DC Solenoid; AIR	20
	Wrap Spring Clutch/Brake	$\begin{aligned} & \text { Standard CB } \\ & \text { CB-2, 4,5,6,7, }, 10 \end{aligned}$	5,000 (565)	English: $1 / 4-13 / 4{ }^{\prime \prime}$ Metric: 6-45 mm	1800	AC or DC Solenoid; AIR	32
	Wrap Spring Clutch	SP-2, 4, 5, 6	500 (56.5)	English: 3/4-1" Metric: 20-25 mm	1500	AC or DC; AIR	70
Stopping STOP	Friction Brake	BF-11, 15, 17, 22, 26	125 (14.13)	English: $3 / 16-1^{\prime \prime}$ Metric: $3-35 \mathrm{~mm}$	5000	DC	99
	Friction Brake	MBF-26, 30, 40, 50, 60, 80, 100 (L \& S)	3540 (400)	Metric: 12 -60mm	5000	DC	103
Holding	Wrap Spring Brake	BDNB	250 (28.23)	English: $1 / 2^{\prime \prime}$	200	N/A	72
	Friction Brake	BF-11, 15, 17, 22, 26	125 (14.13)	English: $3 / 16-1^{\prime \prime}$ Metric: 3-35mm	5000	DC	99
	Friction Brake	$\begin{aligned} & \text { SB-15, 17, 19, 23, 26, 28, } \\ & 30,40,50,70 \end{aligned}$	1200 (135.6)	English: $1 / 4-2$ " Metric: 3-45 mm	5000	DC	107
	Friction Brake	FSB-15, 17	3 (0.34)	English: $3 / 16-3 / 8$ " Metric: $3-8 \mathrm{~mm}$	5000	DC	111
	Friction Brake	$\begin{aligned} & \text { RAB-11, } 13,15,20,25,32 \text {, } \\ & 40,50,60 \end{aligned}$	1239 (140.0)	Metric: 6-40 mm	5000	DC	113
	Friction Brake	PMB-30, 40, 50, 60, 65, 75, 85, 100	4250 (480.0)	English: $3 / 8-15 / 8^{\prime \prime}$ Metric: $11-45 \mathrm{~mm}$	3000	DC	115
	Friction Brake	MBRP-15, 19, 22, 26	$4(35,40)$	Metric: 5-45mm	5000	DC	119
	Friction Brake	MBF-26, 30, 40, 50, 60, 80, 100 (L \& S)	3540 (400)	Metric: 12-60 mm	5000	DC	103
	Friction Brake	MDB	**IItermittent/Continuous				122
	*Consult factory for higher speeds						

Clutches \& Brakes

Product Selection

BRAKES \& CLUTCHES SELECTION CHART-BY CAPABILITY This chart contains basic information to determine when to use a Wrap Spring or Friction product.*		
Capability	The Genuine Wrap Spring ${ }^{\text {M }}$	Friction
Torque Capacity Per Unit Size	\checkmark	
Low Power Consumption	\checkmark	
Single Revolution	\checkmark	
Random Start/Stop		\checkmark
Brake: Power-On		\checkmark
Brake: Power-Off		\checkmark
Soft Start/Soft Stop		\checkmark
Positive Engagement	\checkmark	
Stopping Accuracy	\checkmark	
Speeds Up To 1750	\checkmark	\checkmark
Speeds Over 1750		\checkmark
Bi-Directional Rotation		\checkmark
Rapid Cycling	\checkmark	\checkmark
Actuation - Electric	\checkmark	\checkmark
Actuation - Pneumatic	\checkmark	
Actuation - Mechanical	\checkmark	
Manual Release		\checkmark
Torque Adjustment Feature		\checkmark

*Many applications require additional specifications not shown in the chart above. Always review your application requirements before choosing a brake or clutch product.

The Genuine Wrap Spring ${ }^{\text {TM }}$ Clutches \& Brakes
 Operation Design Principles

The basic wrap spring clutch consists of three elements: an input hub, an output hub and a spring whose inside diameter is slightly smaller than the outside diameter of the two hubs.
When the spring is forced over the two hubs, rotation in the direction of the arrow wraps it down tightly on the hubs, positively engaging them. The greater the force of rotation, the more tightly the spring grips the hubs.

Wrap Spring Design Configurations

Overrunning Clutch

In its basic form, the wrap spring clutch operates as an overrunning clutch. When the input hub is rotated as shown, the spring wraps down to engage the two hubs. If the input is stopped or reversed, the spring unwraps to release the output hub, allowing the load to overrun. PSI Series overrunning clutches can also perform one-way indexing and backstopping functions.

Combination Clutch/Brake

The wrap spring clutch/brake utilizes two control tangs to hold either the clutch or brake spring open. When the clutch and brake control tangs rotate with the input hub, the input hub and output shaft are positively engaged by the clutch spring. When the brake control tang is locked by the stop collar, the brake spring wraps down to engage the output shaft to the stationary brake hub. At the same time, the clutch spring unwraps slightly, allowing the input hub to rotate freely.

Start-Stop Clutch
(Random Positioning)

Modifying the basic PSI Series clutch with a control tang allows the clutch to engage and then disengage the load when the control tang is locked in position by the stop collar. Once disengaged, the load coasts freely from the continuously running input.

Single Revolution Clutch

A second tang, secured to the output hub, allows PSI Series clutches to perform single revolution functions. When the control tang is engaged, the output hub cannot overrun because it is secured to the spring. Single revolution PSI, SP and SAC Series clutches are capable of stopping only 10% of their starting load capacity. A CB Series unit is recommended where higher braking torque is required.

The Genuine Wrap Spring Clutches \＆Brakes

Applications

The Genuine Wrap Spring clutch／brakes pro－ vide hundreds of simple motion processes that can be controlled through the three basic wrap spring clutch functions：overrun－ ning，start－stop and single revolution．

Important Facts

－The torque capacity of a spring clutch or brake is a direct function of the diameter of the hub and the tensile strength of the spring．
－A spring clutch or brake will not slip． It will attempt to supply the torque demanded，up to the mechanical limi－ tations of the spring．
－When the spring is allowed to wrap down（or grip the hubs），the output hub will accelerate to the input RPM in ． 003 seconds，the output in .0015 seconds．
－The dynamic torque of acceleration or deceleration is proportional to the RPM multiplied by the load inertia and divided by the acceleration time．This fact indicates that spring clutches and brakes are inertia sensitive－the more inertia，the higher the dynamic torque．
－The torque demand of the spring clutch is equal to the system frictional torque of the load plus the dynamic torque of acceleration．
－When coming to the stop position of the cycle，there must be enough ener－ gy in the rotating mass of the load to allow the spring to release its grip on the input hub．This means that if there is a large frictional load or a torque demand such as coming up to the top of a cam，there must be sufficient energy in the rotating mass to open the spring．Failure to do so will result in possible input hub wear and／or noise．

Single Revolution

Riveter

Through a wrap spring clutch，the motor drives a large flywheel and a large eccen－ tric mass connected to the piston－like riv－ eting ram．The wrap spring clutch－brake always stops at just past top dead center position，ready for the next cycle．

Egg Packaging

 at start and stop is only the inertia of the crank．

The Genuine Wrap Spring ${ }^{\text {TM }}$ Clutches \& Brakes

Start-Stop Applications

Literally hundreds of simple motion processes can be controlled through the three basic functions of wrap spring clutches and brakes-Overrunning, Start-Stop, and Single Revolution. Here are just a few examples:

- Mail openers and inserters, collators
- Bag making, paper feed
- Food processing
- Metal riveting, stapling and stitching
- Paper edge trimming
- Film advance
- Inclined conveyors
- Stackers
- Conveyor diverter gate
- Wire bending
- Money counter
- Paper printing and folding
- Newspaper vending machine door mechanism
- Wire windup machine/material cutoff
- Conveyor drives
- Heavy duty machinery
- Rapid cycling equipment

Single Revolution

Rotary Table

The worm drive in this application is in a 16:1 ratio to the indexing table so that each power supply pulse to the wrap spring clutch/brake solenoid indexes the table a single position for filling, sorting, inspecting, etc.

Product Selection

- Super CB
- Standard CB
- SAC
- PSI

Advantages

- Speed and accuracy increases productivity
- Excellent repeatabilityno cumulative error
- Minimum system inertia

Computerized Order Picker

800 wrap spring clutches, one at each station, dispense packages at the rate of three per second, onto a constantly moving belt to make up various customer orders. The computer-controlled system signals the appropriate clutch, which drives a paddle wheel-type belt system. This, in turn, ejects one package per computer signal.

Advantages

- Positioned control of paddle ejector made possible with positive, single revolution type clutch

Product Selection

- SAC
- PSI
- No cumulative error assures that orders are filled properly
- Simple control. One drive motor for the complete system. Low cost.

The Genuine Wrap Spring Clutches \& Brakes

Overrunning Applications

Incline Conveyor

Anti-backup, anti-back driving

The PSI Series mechanical wrap spring clutch acts as an anti-backup device on this inclined conveyor. When the conveyor is running, the wrap spring is disengaged, allowing the clutch output to freewheel. When the conveyor drive is disengaged, the conveyor starts to reverse and engages the wrap spring, which then acts as an effective brake.

Advantages

- Uni-directional control facilitates low-cost design
- Maintenance free

Product Selection

- PSI

Precise Registration

Print Wheel

In this high-speed code printing machine, a photo eye scans a mark on the web and signals a single-revolution wrap spring clutch to drive the print wheel in exact registration with the continuously moving web. Variations in printing positioning cannot be tolerated.

Advantages

- Fast/Accurate-the wrap spring clutch rapidly accelerates the print wheel and returns it to home position with no cumulative error. Long acceleration times would cause smearing and misregistration.
- Compact—high torque-to-size ratio makes it easy to fit into the small space, thus reducing overall machine size and cost.
- Control-electric actuation for simple interface with the photo eye signal.

Linear-to-Rotary Translation

Rack and Pinion Indexing Drive

Since wrap spring clutches are inherently uni-directional, the PSI overrunning model "0" clutch in this application operates as a ratchet drive. When the rack is moved upward, the wrap spring clutch engages to translate torque to the feed conveyor. On the downward side of the stroke, the wrap spring clutch is disengaged.

Advantages

- Simple-requires no external controls or sensors
- Reliable
- Maintenance free

Product Selection

- PSI

Friction Clutches \& Brakes

Operation and Design Principles

Electromagnetic Clutch (CS, MCS)

An electromagnetic clutch in its simplest form is a device used to connect a motor to a load. Generally the motor shaft is pinned or keyed to the clutch rotor-shaft assembly (1) bore (input), with the load connected to the armature (output) of the clutch (2) by a pulley or gear. Until the coil (3) is energized, this armature assembly is not coupled, thus not rotating with the input rotor-shaft. Upon coil energization, the rotor-shaft assembly becomes part of an electromagnet, attracting the
armature plate (4), engaging this with the rotor assembly and thus driving the load. When the coil is de-energized, these two attracted elements are no longer attracted and are separated by a spring (5) within the armature assembly. The motor shaft and load are then no longer connected and, therefore, the load is not driven. The clutch enables the motor to remain on while the load is idle, benefiting in faster cycle time and better overall system efficiency.

Power-On Electromagnetic Brake (BF, MBF)

A power-on electromagnetic brake operates using the same principle as the clutch but with only a single rotating component, the armature assembly (1). The brake is generally positioned on the load shaft with the armature assembly secured to the shaft while the field assembly (2) is
mounted to a non-rotating component or bulkhead. Until the coil is (3) energized, the armature assembly will rotate freely. Upon energization, the field assembly becomes an electromagnet, attracting the armature plate (4), thus braking the load.

Power-Off Electromagnetic Spring-Set Brake (SB, FSB)

A power-off electromagnetic spring-set brake operates on a slightly different principle. The actual braking force is applied by the use of compression springs within the field assembly. In normal power-off mode, these springs (1) apply pressure to the fixed (non-rotating) armature plate (2), which, in turn, applies pressure to
the rotor (3). This rotor has the ability to "float" back and forth under the applied pressure depending on the state of the coil. It is coupled to the load shaft by a spline or hex through a hub (4). Some rotors are suspended between two diaphragm-like springs to achieve the "floating" state.

Power-Off Electromagnetic Permanent Magnet Brake (RAB)

A power-off electromagnetic permanent magnet brake operates on the principle of the attractive force of a permanent magnet creating the braking action, while the electromagnet is used to negate this force, allowing load rotation. In normal power-off mode, the permanent magnet in the fixed field assembly (1) creates an
attractive force on the armature assembly (2), which is attached to the load shaft by means of set screws or pins, hence stopping or holding the load. Upon coil energization, the electromagnet forms an opposing magnetic force to the permanent magnet, thus allowing the armature assembly free rotation (no brake).

Friction Clutches \& Brakes

Applications

Electromagnetic Clutches \& Clutch Couplings

Electromagnetic clutches provide an efficient, electrically switchable link between a motor and a load. Clutches are used to couple two parallel shafts by the use of pulleys, gears or sheaves. While the field (electromagnet) assembly is prevented from rotating by an anti-rotation tab or flange, the rotor and armature assembly are mounted on a single shaft with the rotor secured to the shaft. The armature is bearing mounted and free to rotate. When
the coil is energized, the armature engages the friction surface of the rotor, thus driving the load.
Electromagnetic clutch couplings provide this same efficient, electrically switchable link between a motor and a load for inline shafts. While the field (electromagnet) assembly is prevented from rotating by an anti-rotation tab or flange, the rotor and armature assembly are securely mounted on opposing inline shafts. When the coil is

Shafts must be fully bearing supported

Electromagnetic Brakes

Electromagnetic power-on brakes provide an efficient, switchable means of stopping and/or holding the load. While the field (electromagnet) assembly is fixed and prevented from rotating by a flange, the armature assembly is secured to the shaft. When the coil is energized, the armature engages the friction surface of the fixed field (electromagnet) assembly, thus stopping and/or holding the load.
Offered in spring-set or permanent magnet
designs, electromagnetic power-off brakes provide a safe, efficient means of stopping and/or holding a load in the absence of power. While the field (electromagnet) assembly is fixed and prevented from rotating, the rotor (spring-set design) or armature (permanent magnet design) assembly is secured to the shaft. In the absence of power, the fixed and rotating components are engaged, thus stopping and/or holding the load. When the coil is energized,

Tooth Brakes \& Clutches

When used in either static or low-speed engagement applications, tooth clutches and clutch couplings provide an efficient, positive, switchable link between a motor and load on inline or parallel shafts. While the field (electromagnet) assembly is prevented from rotating by a fixed flange, the rotor is generally attached to the input shaft. The armature assembly is securely mounted to either an inline load shaft or a parallel shaft by means of pulleys or gears.

When the coil is energized, the tooth profile of the armature positively engages the tooth profile of the rotor, coupling the two inline or parallel shafts, thus driving the load.
Tooth brakes provide an efficient, positive, switchable means of either holding a load or decelerating a load from a slow speed, generally 20 RPM or less. Utilizing the same principle as the tooth clutch, these brakes can be used to effectively hold a load in position. Available in power-on or

power-off models, tooth brakes are ideal for applications requiring high torque in tight places.

Multiple-Disc Brakes \& Clutches

Multiple-Disc Clutches provide a smooth efficient, switchable link between a motor and a load on inline or parallel shafts. While the field (electromagnet) assembly is prevented from rotating by an anti-rotation tab or flange, the rotor is securely mounted on the drive shaft. The armature assembly is then mounted either directly on an opposing inline shaft or indirectly on a parallel shaft by means of gears or pulleys. When the coil is energized, the armature
engages the friction surface of the rotor, further engaging the multiple discs within the assembly until full torque is achieved, thereby coupling the two inline or parallel shafts, thus driving the load.
Multiple-Disc Brakes offer the same smooth, efficient operation as a braking device. By eliminating the rotor component and using the electromagnet to engage a static field assembly and a rotating armature assembly, braking can be achieved.

These units provide high torque in a compact package size primarily for custom applications in the aerospace industries.

Custom Assemblies (Value-Added Designs)

Variations of any device shown in this catalog can be adapted specifically to meet the most demanding needs of your application. Custom gears, pulleys, sprockets, integrally
mounted to the clutch can be combined with special shaft sizes, coil voltages, connector assemblies or any other type of design imaginable.

Friction Applications

Power-Off Brakes

Patient Lift

The SB can be used as a holding brake to consistently hold a load in position at a specific stopping point.

Advantages

- Uni-directional control
- Compact design
- Non-asbestos friction material
- Factory set air gaps (no need to adjust)
- Interchangeability with many existing brake designs

Product Selection

- SB
- LBRP

Transfer Case

The BRP is used to hold a rotary gear train in place when the transfer case is in the static mode.

Advantages

- Uni-directional control
- Compact design
- Factory set air gap
- Non-asbestos friction material

Product Selection

- BRP
- SB

Floor Sweeper/Scrubber

SB are used as a parking brake to hold the vehicle on inclines, etc. The SB eliminates the need for manual brake linkage or expensive hydraulic brakes.

Advantages

- Uni-directional control
- Compact design
- Non-asbestos friction material
- Factory set air gaps (no need to adjust)
- Manual release options
- Interchangeability with many existing brake designs

Product Selection

- PMB
- SB

dIStRIBUIDOR

Friction Applications

Power-On Clutches \& Brakes

Paper Feed

Power-On Clutch Application: CS products are used on paper feed applications. There is a prime motor that drives a series of belts/pulleys that drive feed rollers. The CS are mounted on the feed roller shaft. When power is applied to the CS, the clutch engages and then drives the feed roller. The clutch will continue to drive until power is removed.

Advantages

- Low inertia and minimal drag
- Fast response, repeatable performance
- Energy efficient
- Simple installation
- Non-asbestos friction material

Product Selection

- CS
- CSC

Power Sliding Door

Power-On Tooth Clutch Application:
TC is a power-on tooth clutch used to drive a mechanical drive assembly in either direction

Advantages

- Simple installation
- Energy efficient
- Torque to size ratio
- Positive engagement, indexing capability

Product Selection

- TC
-CS

Conveyor Drive System

Power-On Clutch and Brake Application:
CS power-on clutches are used to drive the conveyor belt. The BF power-on brake is used to stop the conveyor belt.

Advantages

- Fast response, repeatable performance
- Static or dynamic engagement
- Simple installation
- Energy efficient
- Economic cost
- Non-asbestos friction material

Product Selection

- CS
- BF

Application Data Form

Worksheet

Application Data Form

The Genuine Wrap Spring ${ }^{\text {m }}$

The Genuine Wrap Spring ${ }^{\text {ma }}$

How To Select

Wrap spring clutches and brakes are prepackaged, pre-assembled units that are as easy to select as they are to install. The simple three step selection process includes:

Step 1 Determine the clutch or brake function

Step 2 Determine the size
Step 3 Verify the design considerations
This selection process is based on the assumption that the diameter of the shaft at the clutch or clutch/brake location has been designed through good machine design practice. For most applications, this process will determine the right size product. When the performance requirements of a given application are marginally within the capabilities of a product, consider using the next larger size. In instances where required load/speed performance data is known and unit size is uncertain, use the technical selection process starting on page 74, which will help you review all necessary aspects of your application.

Step 1

Determine the clutch or brake function

Wrap spring clutches and brakes can perform three control functions-overrunning, start-stop and single revolution. Determine the function that will provide the best control for your application. The application ideas shown on pages 8-9 may be helpful. Select the series that best fits your application requirements from the chart below.

Step 2

Determine the size

To select the correct size unit, determine the maximum RPM at which the clutch or brake will operate and the shaft diameter on which the wrap spring unit will be mounted. A wrap spring clutch engages almost instantly and, since spring wrap increases with load, the unit must be sized carefully to ensure that it is cor-
rect for the application. If there is any uncertainty regarding the correct unit size, we recommend using the technical selection process starting on page 74 . To select the correct wrap spring unit, locate the appropriate speed and shaft diameter points on the chart that correlates to the model that best suits your application. For applications requiring speed or diameter values higher than those illustrated, please contact your local Thomson distributor or your sales representative.

Step 3

Verify the design function considerations

Once the appropriate series and model size have been determined, review the design considerations. A complete checklist of these and other options are detailed in the "How to Order" section for each series.

Selection by Function

Function	Performance	Wrap Spring Product	Max Torque		Max.* RPM	Max. Cycles/ Minute	Actuation Method
			Starting $\mathrm{lb}-\mathrm{in}(\mathrm{~N}-\mathrm{m})$	Stopping Ib-in (N-m)			
Overrunning	An overrunning clutch will transmit torque in one direction only when the input hub is stopped or reversed. Consequently, the load is disengaged and free to rotate or overrun. Engaged in one direction only	PSI Series Model 0	2500 (282.5)	N/A	1800	N/A	Reverse input rotation
		ACCM	1500 (169.5)	N/A	400	N/A	Mechanical
		ACCM Heavy Duty	2500 (282.5)	0	400	N/A	Mechanical
Start-Stop	A start-stop clutch will engage and disengage a load either by mechanical or electrical actuation. Start-stop clutches provide a random stop position for the load. Random Positioning	PSI Series Model SS	2500 (282.5)	0	1800	N/A	Mechanical
		SAC Series Model SS	500 (56.5)	0	1800	N/A	AC; DC Solenoid or AIR
		ACCE	1500 (169.5)	0	400	N/A	AC; DC Solenoid or AIR
		ACCE Heavy Duty	2500 (282.5)	0	400	N/A	AC; DC Solenoid or AIR
		ACCM	1500 (169.5)	0	400	N/A	Mechanical
		ACCM Heavy Duty	2500 (282.5)	0	400	N/A	Mechanical
Single Revolution	A single revolution clutch or clutch/brake will accurately position a load with no cumulative error for each single revolution cycle. Multiple stop collars with up to 24 stops (per revolution) provide fractional revolution capability. Accurate positioning for single or multiple	PSI Series Model S	2500 (282.5)	250 (28.25)	1800	1800	Mechanical
		SAC Series Model S	500 (56.5)	50 (5.65)	1800	1200	AC; DC Solenoid or AIR
		Super CB	5000 (565.0)	5000 (565.0)	1800	1200	AC; DC Solenoid or AIR
		Standard CB	5000 (565.0)	5000 (565.0)	1800	1200	AC; DC Solenoid or AIR
		ACCE	1500 (169.5)	0	400	N/A	AC; DC Solenoid or AIR
		ACCE Heavy Duty	2500 (282.5)	0	400	N/A	AC; DC Solenoid or AIR
		ACCM	1500 (169.5)	0	400	N/A	Mechanical
		ACCM Heavy Duty	2500 (282.5)	0	400	N/A	Mechanical

[^0]
The Genuine Wrap Spring

Selection

Design Considerations

All Models

- CW or CCW rotation
- Single or multiple stop collar
- Bore size

Super CB and CB Series

- AC or DC solenoid and pneumatic
- CB-5, CB-6, CB-7, CB-8 and CB-10 sizes available in the long life, Super CB Series. See pages 18-29 for specific details.

SAC Series

- AC or DC solenoid and pneumatic

PSI Series

- Hub input/shaft output or shaft input/ hub output
- Overrunning Model 0 , start-stop Model SS or single revolution Model S

Selection Charts - RPM vs. Shaft Diameter
Super CB and Standard CB Series

SAC Series

PSI Series

Super CB Series

Longer Life, Extra Performance Clutch/Brake Packages

Super CB Series combination clutches and brakes accurately start and stop loads driven by a continuously rotating power source. CB units operate from a single AC or DC pulse, stopping the load within $\pm 1 / 2^{\circ}$ noncumulative at speeds up to 750 RPM, depending on size. Each unit is pre-engineered and pre-assembled for easy installation.

Super CB clutches and brakes provide 3 to 5 times longer life. The five sizes of Super CB clutch/brake packages offer extraordinary performance and durability for those applications requiring long life under high load, high duty cycle conditions. Thomson will retrofit standard CB-5, CB-6, CB-7, CB-8, CB-10.

Features

- Available in five sizes
- Cost-effective design
- 3-5 times longer life than Standard CB
- Split cam design sizes CB-5, CB-6, CB-7 CB-8
- Adjustable control collars for easy and accurate output stop position setting
- RoHS compliant
- Load over-travel or backup is eliminated since Super CB units lock the load in both directions when the solenoid is off
- Anti-overrun feature prevents the output from running faster than the input
- Roller bearings never need adjustment for wear
- Bring loads up to speed in 3 milliseconds and stop within 1.5 milliseconds
- AC or DC operated-other voltages available
- See page 62 for controls
- Direct retrofit for Standard CB-5, CB-6, CB-7, CB-8, CB-10
- 1-, 2- or 4-stop collar with steel insert standard
- Reinforced plastic stop collars also available for up to 24 -stop maximum
- Heavy duty, industrial-grade coils
- High cycle rate capability
- High torque-to-size ratio
- Repeatable positioning within $\pm 1 / 2^{\circ}$

Typical Applications

- Riveters

- Punch presses
- Packaging equipment
- Conveyor drives
- Heavy duty machinery
- Rapid cycling equipment

How to Order

OPTIONS	
Dust Covers	See page 60
Stop Collars	See page 61
Pneumatic Actuators	

Super CB Series

Solenoid-Operated Combination Clutch/Brake Packages

PERFORMANCE					
	CB-5	CB-6	CB-7	CB-8	CB-10
Static torque	$250 \mathrm{lbs} .-\mathrm{in}$. (28.25 Nm)	$500 \mathrm{lbs} .-\mathrm{in}$. (56.5 Nm)	$\begin{aligned} & \text { 1,500 Ibs.-in. } \\ & \text { (169.5 Nm) } \end{aligned}$	$\begin{aligned} & \text { 2,500 Ibs.-in. } \\ & \text { (282.5 Nm) } \end{aligned}$	$\begin{aligned} & 5,000 \mathrm{lbs} . \text { in. } \\ & (565 \mathrm{Nm}) \end{aligned}$
Maximum anti-overrun holding capability	$\begin{aligned} & 45 \mathrm{lbs} .-\mathrm{in} . \\ & \text { (5.085 Nm) } \end{aligned}$	300 lbs .-in. (33.9 Nm)	600 lbs .-in. (67.8 Nm)	600 lbs.-in. (67.8 Nm)	$\begin{aligned} & \text { 1,200 lbs.-in. } \\ & (135.6 \mathrm{Nm}) \end{aligned}$
Maximum anti-back holding capability	$160 \mathrm{lbs} .-\mathrm{in}$. (18.08 Nm)	300 lbs .-in. (33.9 Nm)	600 lbs.-in. (67.8 Nm)	$600 \mathrm{lbs} .-\mathrm{in}$. (67.8 Nm)	$\begin{aligned} & \text { 1,200 Ibs.-in. } \\ & \text { (135.6 Nm) } \end{aligned}$
Inertia, rotating parts	. $195 \mathrm{lbs} .-\mathrm{in} .^{2}$	$1.718 \mathrm{lbs} .-\mathrm{in} .^{2}$	6.75 lbs.-in. ${ }^{2}$	$12.84 \mathrm{lbs} .-\mathrm{in} .^{2}$	48.0 lbs.-in. ${ }^{2}$
Maximum radial bearing load at maximum speed	32 lbs .	63 lbs .	300 lbs .	300 lbs .	500 lbs .
Maximum operating speed	750 RPM	500 RPM	400 RPM	300 RPM	200 RPM
Response time, voltage on at full speed	27 MS	45 MS	50 MS	50 MS	70 MS
Weight	3 lbs .	7 lbs .	12 lbs .	15 lbs .	27 lbs .

See page 74 for Minimum Inertia Requirements. See pages 81 \& 82 for Mounting Requirements.

RPM vs. SHAFT BORE				
Size	Max RPM	Shaft Bores Standard in. (mm)	Shaft Bores Special in. (mm)	Shaft Bores Metric in. (mm)
CB-5	750	1/2" (12.7)	-	.4724-. 4741 (12.0)
CB-6	500	$3 / 4$ " or $1^{\prime \prime}$ (19.05 or 25.4)	-	$\begin{aligned} & .7874-.7894(20.0) \\ & \hline 9842-.9862(25.0) \end{aligned}$
CB-7	400	$1^{\prime \prime}, 1 \frac{1}{4} 4^{\prime \prime}$ or $1 \frac{1}{2} 2^{\prime \prime}(25.4,31.75$ or 38.10$)$	$3 / 4{ }^{\prime \prime}$ (19.05)	$\begin{aligned} & .9843-.9863(25.0) \\ & 1.1811-1.8311(30.0) \\ & 1.3780-1.3804(35.0) \end{aligned}$
CB-8	300	$1 \frac{1}{4}{ }^{\prime \prime}$ or $1 \frac{1}{2}{ }^{\prime \prime}(31.75$ or 38.1)	$1^{\prime \prime}$ or $13 / 8^{\prime \prime}$ (25.4 or 34.925)	$\begin{aligned} & 1.3780-1.3804(35.0) \\ & 1.5784-1.5772(40.0) \end{aligned}$
CB-10	200	$11 / 2^{\prime \prime}(38.1)$	$15 / 8^{\prime \prime}$ or $13 / 4^{\prime \prime}$ (41.275 or 44.45)	$\begin{aligned} & 1.5749-1.5772(40.0) \\ & 1.7717-1.7740(45.0) \end{aligned}$

[^1]
Super CB-5 Clutch/Brake

Dimensions \& Specifications

Mounting requirements see pages $81 \& 82$.

PERFORMANCE	
Static torque	$250 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	45 lbs -in.
Maximum anti-back holding capability	160 lbs. in.
Inertia, rotating parts	$0.1950 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	32 lbs.
Maximum operating speed	750 RPM
Response time, voltage on at full speed	27 MS
Weight	3 lbs.

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.103^{*}	280.0	Standard
24 DC	0.325	74.0	Standard
12 DC	0.732	16.4	Modification
90 DC	0.096	936.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current . 232 amps / Holding current .098 amps

BORE \& KEYWAY DATA			
Bore A	Pin Hole B	Mtg. Hole C	Set Screws D
$\begin{gathered} 0.5005-0.5025 \\ (12.712-12.764) \end{gathered}$	$\begin{aligned} & 0.124-0.129 \\ & (3.14-3.28) \end{aligned}$	$\begin{aligned} & 3 x ~ \# 10-32 \text { UNF-2B } \\ & \text { on } 1.25 \mathrm{BC} \end{aligned}$	$\# 8-32 \times 0.25$ Lg. Hex Skt. Set Screw
METRIC BORES			
$\begin{aligned} & 0.4724-4741 \\ & (12.0 \mathrm{Hg}) \end{aligned}$	$\begin{aligned} & 0.117-0.121 \\ & (2.97-3.08) \end{aligned}$	$\begin{aligned} & 3 \mathrm{X} \mathrm{M5} \times 0.8 \text { on } \\ & 31.75 \text { BC } \end{aligned}$	M4 x 0.7×6.0 Lg. Hex Skt. Set Screw

Brakes \& Clutches

Super CB-5 Clutch/Brake

COMPONENT PARTS			
Item	Description	Rotation	Part No.*
1	Retaining Ring		748-5-0006
2	Input Hub Anti-Overrun		$\begin{aligned} & 541-5-0029 \\ & (541-5-0030) \end{aligned}$
3	Control Collar (Specify No. of Stops) Standard - 1.8° Adjustable	CW/CCW	266-5-0801
4	Drive Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-5-0001 \\ & 808-5-0002 \end{aligned}$
5	Brake Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-5-0001 \\ & 808-5-0002 \end{aligned}$
6	Anti-Back Spring	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CCW} \end{aligned}$	$\begin{aligned} & 808-5-0005 \\ & 808-5-0006 \end{aligned}$
7	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-5-0003 \\ & 808-5-0004 \end{aligned}$
8	Plate Assembly	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 686-5-0001 \\ & 686-5-0002 \end{aligned}$
9	$\begin{aligned} & \text { Output Assembly } \\ & 0.50 \text { Bore } \\ & \text { (12.0 mm Bore) } \end{aligned}$		$\begin{aligned} & 824-5-0469 \\ & (824-5-0470) \end{aligned}$

COMPONENT PARTS			
Item	Description	Rotation	Part No.*
10	$\begin{aligned} & \text { Coil Assembly } \\ & 24 \text { DC } \\ & 115 \text { AC } \\ & 12 \text { DC } \\ & 90 \text { DC } \end{aligned}$		$\begin{aligned} & 101-5-0003 \\ & 101-5-0006 \\ & 101-5-0002 \\ & 101-5-0005 \end{aligned}$
11	Actuator Assembly	$\begin{gathered} \text { CW } \\ \text { CCW } \end{gathered}$	$\begin{aligned} & 101-5-0060 \\ & 101-5-0061 \end{aligned}$
12	Anti-Back Hub		$\begin{aligned} & 540-5-0006 \\ & (540-5-0047) \end{aligned}$
13	Dust Cover (AB Spring)		287-5-9002
14	Brake Hub		541-5-0024
15	Pan Head Machine Screw (Sems) (2)		797-1-0414
16	Spring Pin		679-1-0024
17	Headless Socket Set Screw		$\begin{aligned} & 797-1-0153 \\ & (797-1-0769) \end{aligned}$
18	Flat Head Socket Cap Screw		797-1-0322
19	Thrust Washer		950-5-0006
20	Spacer		807-1-9002

* Part numbers in () are metric

Super CB-6 Clutch/Brake

Dimensions \& Specifications

ELECTRICAL DATA			
Voltage	Gurrent (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.334^{*}	57.5	Standard
24 DC	0.586	41.0	Standard
12 DC	1.150	10.4	Modification
90 DC	0.151	598.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 1.1 amps / Holding current 0.2 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 0.7505-0.7525 \\ (19.062-19.114) \end{gathered}$	$\begin{aligned} & 0.1885-0.1905 \\ & (4.787-4.839) \end{aligned}$	$\begin{gathered} 0.837-0.842 \\ (21.25-21.39) \end{gathered}$	$2 x$ \#10-32 UNC-2B x. 19 Lg. Hex Skt. Set Screw	$\begin{gathered} 3 x \neq 1 / 4-20 \text { UNC-2B } \\ 2.062 B C \end{gathered}$
$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	-	-	$\begin{aligned} & \left.2 \times \begin{array}{l} 0.187-0.192 \\ (4.74-4.88) \end{array}\right) \text { Hole } \end{aligned}$	$\begin{aligned} & 3 x \neq 1 / 4-20 \text { UNC-2B } \\ & 2.062 \mathrm{BC} \end{aligned}$
METRIC BORES				
$\begin{gathered} 0.7874-0.7894 \\ (20.0 \mathrm{Hg}) \end{gathered}$	$\begin{aligned} & 0.2356-0.2368 \\ & (5.985-6.015) \end{aligned}$	$\begin{gathered} 0.8976-0.9015 \\ (22.800-22.900) \\ \hline \end{gathered}$	$2 \times \mathrm{M} 5 \times 0.8 \times 5.0$ Lg. Hex Skt. Set Screw	$3 \times \mathrm{M} 6 \times 1.0$ holes on 52.38 BC
$\begin{aligned} & 0.9842-0.9862 \\ & (25.0 \mathrm{H9}) \end{aligned}$	-	-	$2 \times \begin{gathered} 4.87-5.14 \text { Hole } \\ (.191-.203) \end{gathered}$	$3 \times \mathrm{M} 6 \times 1.0$ holes on 52.38 BC

Brakes \& Clutches

Super CB-6 Clutch/Brake

Component Parts

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018

Super CB-7 Clutch/Brake

Dimensions \& Specifications

Dimensions (mm)

Mounting requirements see pages $81 \& 82$.

PERFORMANCE	
Static torque	$1,500 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	$600 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-back holding capability	$600 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$6.75 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	300 lbs.
Maximum operating speed	400 RPM
Response time, voltage on at full speed	50 MS
Weight	12 lbs.

ELECTRICAL DATA			
Voltage	Gurrent (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.334^{*}	57.5	Standard
24 DC	0.586	41.0	Standard
12 DC	1.150	10.4	Modification
90 DC	0.151	598.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 1.1 amps / Holding current 0.2 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	$\begin{aligned} & 0.251-0.253 \\ & (6.37-6.43) \end{aligned}$	$\begin{gathered} 1.114-1.124 \\ (28.29-28.55) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x \neq 5 / 16-18$ UNC-2B on 3.375 BC
$\begin{gathered} 1.2505-1.2525 \\ (31.762-31.814) \end{gathered}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.389-1.399 \\ (35.28-35.54) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x$ \#5/16-18 UNC-2B on 3.375 BC
$\begin{gathered} 1.5005-1.5025 \\ (38.112-38.164) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.605-1.615 \\ (40.76-41.02) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x \neq 5 / 16-18$ UNC-2B on 3.375 BC
METRIC BORES				
$\begin{aligned} & 0.9843-0.9863 \\ & (25.0 \mathrm{H} 9) \end{aligned}$	$\begin{aligned} & 0.3143-0.3156 \\ & (7.983-8.017) \end{aligned}$	$\begin{gathered} 1.1142-1.1241 \\ (28.300-28.552) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	6 x M8 x 1.25 on 85.73 BC
$\begin{aligned} & \text { 1.1811-1.1831 } \\ & (30.0 \mathrm{H9}) \end{aligned}$	$\begin{aligned} & 0.3143-0.3156 \\ & (7.983-8.017) \end{aligned}$	$\begin{gathered} 1.3110-1.3209 \\ (33.299-33.551) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \times \mathrm{M} 8 \times 1.25 \\ & \text { on } 85.73 \mathrm{BC} \end{aligned}$
$\begin{aligned} & 1.3780-1.3804 \\ & (35.0 \mathrm{H} 9) \end{aligned}$	$\begin{aligned} & 0.3930-0.3944 \\ & (9.982-10.018) \end{aligned}$	$\begin{gathered} 1.5079-1.5182 \\ (38.300-38.563) \end{gathered}$	$\begin{aligned} & 2 \times \mathrm{M} 6 \times 1.0 \times 10.0 \\ & \mathrm{Lg} . \text { Hex Skt. Set Screw } \end{aligned}$	$\begin{aligned} & 6 \times \mathrm{M} 8 \times 1.25 \\ & \text { on } 85.73 \mathrm{BC} \end{aligned}$

Super CB-7 Clutch/Brake
 Component Parts

* Part numbers in () are metric

Super CB-8 Clutch/Brake

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see pages 81 \& 82 .

PERFORMANCE	
Static torque	$2,500 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	$600 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-back holding capability	$600 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$12.84 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	300 lbs.
Maximum operating speed	300 RPM
Response time, voltage on at full speed	50 MS
Weight	15 lbs.

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.334^{*}	57.5	Standard
24 DC	0.940	25.4	Standard
12 DC	1.860	6.43	Modification
90 DC	0.240	378.6	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current $1.1 \mathrm{amps} /$ Holding current 0.2 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{aligned} & 1.0005-1.0025^{*} \\ & (25.412-25.464) \end{aligned}$	$\begin{aligned} & 0.251-0.253 \\ & (6.37-6.43) \end{aligned}$	$\begin{gathered} 1.114-1.124 \\ (28.29-28.55) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x \not \approx 5 / 16-18$ UNC-2B on 3.375 BC
$\begin{gathered} 1.2505-1.2525 \\ (31.762-31.814) \end{gathered}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.389-1.399 \\ (35.28-35.54) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x$ \#5/16-18 UNC-2B on 3.375 BC
$\begin{aligned} & 1.3755-1.3775^{*} \\ & (34.937-34.989) \end{aligned}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.518-1.528 \\ (38.55-38.82) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x \not \approx 5 / 16-18$ UNC-2B on 3.375 BC
$\begin{gathered} 1.5005-1.5025 \\ (38.112-38.164) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.605-1.615 \\ (40.76-41.02) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	6 x \#5/16-18 UNC-2B on 3.375 BC
METRIC BORES				
$\begin{aligned} & 1.3780-1.3804 \\ & (35.0 \mathrm{H9}) \end{aligned}$	$\begin{aligned} & 0.3930-0.3944 \\ & (9.982-10.018) \end{aligned}$	$\begin{gathered} 1.5079-1.5182 \\ (38.300-38.563) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \times \mathrm{M} 8 \times 1.25 \\ & \text { on } 85.73 \mathrm{BC} \end{aligned}$
$\begin{aligned} & 1.5784-1.5772 \\ & (40.0 \mathrm{H9}) \end{aligned}$	-	-	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \times \mathrm{M} 8 \times 1.25 \\ & \text { on } 85.73 \mathrm{BC} \end{aligned}$

[^2]
Super CB-8 Clutch/Brake

Component Parts

For assembly and disassembly see page 85 .

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
1	Retaining Ring		748-1-0039
2	Input Hub Anti-Overrun		$\begin{aligned} & 541-8-0009 \\ & (541-8-0012) \end{aligned}$
3	Control Collar (Steel Insert) (Specify No. of Stops) Standard •1.6 ${ }^{\circ}$ Adjustable	CW/CCW	266-8-0275
4	Drive Spring Standard	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0003 \\ & 808-8-0004 \end{aligned}$
5	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0025 \\ & 808-8-0026 \end{aligned}$
6	Output Assembly SPCL (35.0 mm Bore) $(40.0 \mathrm{~mm}$ Bore		$824-8-0579$ $(1 .-00)$ $824-8-0576$ (1.50) $824-8-0577$ (1.38) $(824-8-0578)$ (1.25) $(824-8-0589)$ A/R
7	Anti-Back Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0025 \\ & 808-8-0026 \end{aligned}$
8	Brake Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0003 \\ & 808-8-0004 \end{aligned}$
9	Brake Hub		541-8-0010
10	Plate Assembly	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 686-8-0051 \\ & 686-8-0052 \end{aligned}$

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
11	Button Head Cap Screw (6)		797-1-0064
12	Actuator Assembly (includes plunger) AC AC DC DC	CW CCW CW CCW	$\begin{aligned} & 102-1-0032 \\ & 102-1-0033 \\ & 102-1-0034 \\ & 102-1-0035 \end{aligned}$
13	Coil Assembly "D" Frame 24 DC 115 AC 12 DC 90 DC		$\begin{aligned} & 101-1-0053 \\ & 101-1-0058 \\ & 101-1-0052 \\ & 101-1-0055 \end{aligned}$
13a	Flatwasher (2)		950-1-0006
13b	Lockwasher-Split (2)		950-1-0020
13c	Head Cap Screw (2)		797-1-0044
14	Headless Skt. Set Screw (2)		$\begin{aligned} & 797-1-0174 \\ & (797-1-0783) \end{aligned}$
15	Thrust Washer (2)		950-8-0001
16	Shim (2)		807-1-0002
17	Shim 0.005 0.010		$\begin{aligned} & 801-8-0001 \\ & 801-8-0002 \end{aligned}$
18	Spacer		807-1-9001

Shims used as required

* Part numbers in () are metric

Super CB-10 Clutch/Brake

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see pages 81 \& 82 .

PERFORMANCE	
Static torque	$5,000 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	$1,200 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-back holding capability	$1,200 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$48.0 \mathrm{lbs} . .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	500 lbs.
Maximum operating speed	200 RPM
Response time, voltage on at full speed	70 MS
Weight	27 lbs.

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.174^{*}	14.5	Standard
24 DC	0.940	25.4	Standard
12 DC	1.860	6.43	Modification
90 DC	0.240	378.6	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 2.9 amps / Holding current 0.1 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 1.5005-1.5025 \\ (38.112-38.164) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.669-1.679 \\ (42.39-42.65) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.25$ Lg. Hex Skt. Set Screw	$\begin{aligned} & \text { 6x \#1/4-20 UNC-2B } 0.50 \text { DP } \\ & \text { on } 3.417 \mathrm{BC} \end{aligned}$
$\begin{gathered} 1.6255-1.6275 \\ (41.287-41.339) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.796-1.806 \\ (45.61-45.88) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.25$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \times \# 1 / 4-20 \text { UNC-2B } 0.50 \text { DP } \\ & \text { on } 3.417 \mathrm{BC} . \end{aligned}$
$\begin{gathered} 1.7505-1.7525 \\ (44.462-44.514) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.922-1.932 \\ (48.81-49.08) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.25$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \mathrm{x} \# 1 / 4-20 \mathrm{UNC}-2 \mathrm{~B} 0.50 \mathrm{DP} \\ & \text { on } 3.417 \mathrm{BC} \end{aligned}$
METRIC BORES				
$\begin{aligned} & 1.5749-1.5772 \\ & (40.0 \mathrm{H9}) \end{aligned}$	$\begin{gathered} 0.4717-0.4732 \\ (11.979-12.021) \end{gathered}$	$\begin{gathered} 1.705-1.712 \\ (43.300-43.491) \end{gathered}$	$2 x$ M6 x 1.0×10.0 Lg. Hex Skt. Set Screw	$\begin{gathered} 6 \times \mathrm{M} 6 \times 1.2512 .70 \mathrm{DP} \\ \text { on } 86.79 \mathrm{BC} \end{gathered}$
$\begin{aligned} & 1.7717-1.7740 \\ & (45.0 \mathrm{H} 9) \end{aligned}$	$\begin{gathered} 0.5504-0.5520 \\ (13.980-14.021) \end{gathered}$	$\begin{gathered} 1.922-1.929 \\ (48.80-49.00) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \times \mathrm{M} 6 \times 1.2512 .70 \mathrm{DP} \\ & \text { on } 86.79 \mathrm{BC} \end{aligned}$

Brakes \& Clutches

Super CB-10 Clutch/Brake

Component Parts

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
1	Retaining Ring-Truarc		748-1-0020
2	Input Hub Anti-Overrun		$\begin{aligned} & 541-0-0017 \\ & (541-0-0022) \end{aligned}$
3	Retaining Ring		748-1-0217
4	Spacer		807-0-0013
5	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-0-0001 \\ & 808-0-0002 \end{aligned}$
6	Control Collar Steel Insert Assembly (Specify No. of Stops) Standard 1.5° • Adjustable	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 266-0-0201 \\ & 266-0-0211 \end{aligned}$
7	Drive Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-0-0009 \\ & 808-0-0010 \end{aligned}$
8	Shaft Assembly (Specify Bore) Anti-Overrun (40.00 mm Bore)	$\begin{aligned} & 1.500 \\ & 1.625 \\ & 1.750 \end{aligned}$	$\begin{aligned} & 824-0-0097 \\ & 824-0-0098 \\ & 824-0-0099 \\ & (824-0-0100) \end{aligned}$
9	Headless Set Screw		$\begin{aligned} & 797-1-0173 \\ & (797-1-0784) \end{aligned}$
10	Skt Head Cap Screw		797-1-0055
11	Head Cap Screw		797-1-0044
12	Lockwasher-Split		950-1-0020

For assembly and disassembly see pages $85 \& 86$.

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
13	Actuator Plate Assembly	CW CCW	$\begin{aligned} & 101-0-0052 \\ & 101-0-0053 \end{aligned}$
13a	Plate		686-0-0001
13b	Pivot Pin		679-0-0001
13c	Lock Nut		661-1-0010
14	$\begin{aligned} & \text { DC Coil Assembly } \\ & 24 \text { DC } \\ & 12 \text { DC } \\ & 90 \text { DC } \end{aligned}$		$\begin{aligned} & 101-0-0003 \\ & 101-0-0002 \\ & 101-0-0004 \end{aligned}$
15	Actuator Lever		102-0-9001
16	Brake Hub		541-0-0019
17	Brake Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-0-0009 \\ & 808-0-0010 \end{aligned}$
18	Anti-Back Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-0-0007 \\ & 808-0-0008 \end{aligned}$
19	AC Coil Assembly 115 AC	CW CCW	$\begin{aligned} & 101-0-0005 \\ & 101-0-0054 \end{aligned}$
20	AC Actuator Return Assembly		101-0-0009
21	Thrust Washer (Input)		950-0-0002
22	Thrust Washer (Plate)		950-0-0003

[^3]
Standard CB Series

Solenoid-Activated, Combination Clutch/Brakes

CB Series combination clutches and brakes accurately start and stop loads driven by a continuously rotating power source. CB units operate from a single AC or DC pulse, stopping the load within $\pm 1 / 2^{\circ}$ noncumulative at speeds up to 1800 RPM, depending on size. Each unit is preengineered and pre-assembled for easy installation.

Features

- Available in seven sizes
- Adjustable control collars for easy and accurate output stop position setting
- Load over-travel or backup is eliminated since CB units lock the load in both directions when the solenoid is off
- RoHS compliant
- Cost-effective design
- Split cam design, Models CB-5, CB-6, CB-7, CB-8
- Anti-overrun feature prevents the output from running faster than the input
- Permanently lubricated-never needs adjustment for wear
- Brings load up to speed in 3 milliseconds and stops within 1.5 milliseconds
- Single, 2 and 4 stop collar standard, multi-stop collars with up to 24 stops available as specials
- AC or DC operated
- See page 62 for controls

Typical Applications

- Riveters
- Punch presses
- Packaging equipment
- Conveyor drives
- Heavy duty machinery
- Rapid cycling equipment

How to Order

OPTIONS

Dust Covers	See page 60
Stop Collars	See page 61
Pneumatic Actuators	See page 62

Standard CB Series

Combination Clutch/Brake Packages

PERFORMANCE							
	CB-2	CB-4	CB-5	CB-6	CB-7	CB-8	CB-10
Static torque	$\begin{aligned} & 25 \mathrm{lbs} .-\mathrm{in} . \\ & (2.825 \mathrm{Nm}) \end{aligned}$	120 lbs .-in. (13.56 Nm)	250 lbs.-in. (28.25 Nm)	500 lbs .-in. (56.5 Nm)	1,500 lbs.-in. (169.5 Nm)	$\begin{aligned} & 2,500 \mathrm{lbs} . \text { in. } \\ & (282.5 \mathrm{Nm}) \end{aligned}$	$\begin{aligned} & 5,000 \mathrm{lbs} .-\mathrm{in} . \\ & (565 \mathrm{Nm}) \end{aligned}$
Maximum anti-overrun holding capability	$\begin{aligned} & 10 \mathrm{lbs} .-\mathrm{in} . \\ & (1.13 \mathrm{Nm}) \end{aligned}$	$\begin{aligned} & 25 \mathrm{lbs} .-\mathrm{in} . \\ & (2.825 \mathrm{Nm}) \end{aligned}$	45 lbs .-in. (5.085 Nm)	$\begin{aligned} & 300 \mathrm{lbs} .-\mathrm{in} . \\ & (33.9 \mathrm{Nm}) \end{aligned}$	600 lbs .-in. (67.8 Nm)	600 lbs .-in. (67.8 Nm)	1,200 lbs.-in. (135.6 Nm)
Maximum anti-back holding	18 lbs .-in. (2.034 Nm)	$80 \mathrm{lbs} .-\mathrm{in}$. (9.04 Nm)	160 lbs -in. (18.08 Nm)	$\begin{aligned} & 300 \mathrm{lbs} .-\mathrm{in} . \\ & (33.9 \mathrm{Nm}) \end{aligned}$	600 lbs .-in. (67.8 Nm)	$600 \mathrm{lbs} .-\mathrm{in}$. (67.8 Nm)	1,200 lbs.-in. (135.6 Nm)
Inertia, rotating parts	. 0207 lbs .-in. ${ }^{2}$. $0636 \mathrm{lbs} .-\mathrm{in} .^{2}$. 1950 lbs .-in. ${ }^{2}$	$1.718 \mathrm{lbs} .-\mathrm{in} .^{2}$	6.75 lbs .-in. ${ }^{2}$	12.84 lbs .-in. ${ }^{2}$	48.0 lbs.-in. ${ }^{2}$
Maximum radial bearing load at maximum speed	$7.5 \mathrm{lbs} .$.	$14 \mathrm{lbs} .$.	$32 \mathrm{lbs} .$.	$63 \mathrm{lbs} .$.	300 lbs ..	300 lbs ..	$500 \mathrm{lbs} .$.
Maximum operating speed	1,800 RPM	1,200 RPM	750 RPM	500 RPM	400 RPM	300 RPM	200 RPM
Response time, voltage on at full speed	20 MS	24 MS	27 MS	45 MS	50 MS	50 MS	70 MS
Weight	1 lbs.	2 lbs .	3 lbs .	7 lbs.	12 lbs .	15 lbs .	27 lbs .

See page 74 for Minimum Inertia Requirements. See pages 81 \& 82 for Mounting Requirements.

RPM vs. SHAFT BORE				
Size	Max RPM	Shaft Bores Standard in (mm)	Shaft Bores Special in (mm)	Shaft Bores Metric Standard in (mm)
CB-2	1,800	$1 / 4^{\prime \prime}(6.35)$	-	. $2362-2374$ (6.0)
CB-4	1,200	3/8" ${ }^{\text {(}}$ (9.525)	-	. 3937 -3951 (10.0)
CB-5	750	$1 / 2^{\prime \prime}$ (12.70)	-	.4724-4741 (12.0)
CB-6	500	$3 / 4$ " or 1" (19.05 or 25.0)	-	7874-7894 (20.0) or .9842-.9862 (25.0)
CB-7	400	$1^{\prime \prime}, 1 \frac{1}{4} 4^{\prime \prime}$ or $1^{1 / 2^{\prime \prime}}$ ($25.4,31.75$ or 38.10)	$3 / 4^{\prime \prime}$ (19.05)	$.9843-9863(25.0), 1.1811-1.1831$ (30.0) or $1.3780-1.3804(35.0)$
CB-8	300	$11 / 4^{\prime \prime}$ or $1 \frac{1}{1 / 2}{ }^{\prime \prime}(31.75$ or 38.1$)$	$1^{\prime \prime}$ or $13 / 8^{\prime \prime}$ (25.4 or 34.925)	1.3780-1.3804 (35.0) or 1.5784-1.5772 (40.0)
CB-10	200	$11 / 2^{\prime \prime}(38.1)$	$15 / 8^{\prime \prime}$ or $13 / 4{ }^{\prime \prime}(41.275$ or 44.45)	1.5749-1.5722 (40.0) or 1.7717-1.7740 (45.0)
*Consut				

Standard CB-2 Clutch/Brake

Dimensions \& Specifications

Mounting requirements see pages 81 \& 82 .

PERFORMANCE		ELECTRICAL DATA						
Static torque	25 lbs .-in.	Voltage	$\begin{aligned} & \text { Current } \\ & \text { (amps) } \end{aligned}$	Resistance (ohms)	Status			
Maximum anti-overrun holding capability	$10 \mathrm{lbs} .-\mathrm{in}$.							
Maximum anti-back holding capability	$18 \mathrm{lbs} .-\mathrm{in}$.	115 AC 60 Hz	0.104*	825	Standard			
Inertia, rotating parts	$0.0207 \mathrm{lbs} .-\mathrm{in} .^{2}$	24 DC	0.230	104	Standard			
Maximum radial bearing load at maximum speed	7.5 lbs .	12 DC	0.460	26	Modification			
Maximum operating speed	1800 RPM	90 DC	0.059	1510	Modification			
Response time, voltage on at full speed	20 MS	(Coils are rated for continuous duty) *115 AC - In rush current. 10 amps / Holding current .04 amps						
Weight	1 lbs .							
BORE \& KEYWAY DATA								
Bore A	ole B	Mtg. Hos		Set	ws D			
$\begin{aligned} & 0.2505-0.2525 \\ & (6.362-6.414) \end{aligned}$	$\begin{aligned} & -0.065 \\ & -1.66) \end{aligned}$	$\begin{gathered} 3 x \neq 6-32 U \\ \text { on } 0.93 \end{gathered}$		$\begin{aligned} & \text { \#8- } \\ & \mathrm{Lg} . \mathrm{Hex} \end{aligned}$	0.190 Set Screw			
METRIC BORES								
$\begin{gathered} 0.2362-0.2374 \\ (6.0 \mathrm{H9}) \end{gathered}$	$\begin{aligned} & -0.062 \\ & 1.57) \end{aligned}$	$\begin{array}{r} 3 \mathrm{X} \mathrm{M4} \mathrm{x} \\ 23.83 \end{array}$		$\begin{array}{r} \mathrm{M4} \\ \text { Lg. Hex } \end{array}$	$\times 5.0$ Set Screw			

Standard CB-2 Clutch/Brake
 Component Parts

For assembly and disassembly see page 85 .

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
1	Retaining Ring		748-1-0085
2	Input Hub Anti-Overrun		$\begin{aligned} & 540-2-0004 \\ & (540-2-0107) \end{aligned}$
3	Control Collar (Specify No. of Stops) Standard - 2.8° Adjustable	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 266-2-0001 \\ & 266-2-0031 \end{aligned}$
4	Drive Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-2-0108 \\ & 808-2-0109 \end{aligned}$
5	Brake Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-2-0101 \\ & 808-2-0100 \end{aligned}$
6	Anti-Back Spring	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CCW} \end{aligned}$	$\begin{aligned} & 808-2-0004 \\ & 808-2-0003 \end{aligned}$
7	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-2-0003 \\ & 808-2-0004 \end{aligned}$
8	Plate Assembly	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 686-2-0001 \\ & 686-2-0002 \end{aligned}$
9	Output Assembly with Anti-Overrun (0.25 Bore) (6.0 mm Bore)		$\begin{aligned} & 824-2-0006 \\ & (824-2-0319) \end{aligned}$

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
10	$\begin{aligned} & \text { Coil Assembly } \\ & 24 \text { DC } \\ & 115 \text { AC } \\ & 12 \text { DC } \\ & 90 \text { DC } \end{aligned}$		$\begin{aligned} & 275-1-0003 \\ & 275-1-0006 \\ & 275-1-0002 \\ & 275-1-0005 \end{aligned}$
11	Actuator Assembly (kit w/ plunger)		101-2-0001
12	Anti-Back Hub		$\begin{aligned} & 540-2-0003 \\ & (540-2-0109) \end{aligned}$
13	Spring Pin	CCW	679-1-0019
14	Headless Socket Set Screw		$\begin{aligned} & 797-1-0152 \\ & (797-1-0768) \end{aligned}$
15	Flat Head Socket Cap Screw (3)		797-1-0311
16	Brake Hub		540-2-0006
17	Pan Head Machine Screw (Sems) (2)		797-1-0415

Standard CB-4 Clutch/Brake

Dimensions \& Specifications

BORE DETAIL

PERFORMANCE		ELECTRICAL DATA			
Static torque	120 lbs .-in.	Voltage	Current (amps)	Resistance (ohms)	Status
Maximum anti-overrun holding capability	25 lbs .-in.				
Maximum anti-back holding capability	$80 \mathrm{lbs} .-\mathrm{in}$.	115 AC 60 Hz	0.103*	280.0	Standard
Inertia, rotating parts	$0.0636 \mathrm{lbs} .-\mathrm{in} .^{2}$	24 DC	0.325	74.0	Standard
Maximum radial bearing load at maximum speed	14 lbs .	12 DC	0.732	16.4	Modification
Maximum operating speed	1200 RPM	90 DC	0.096	936.0	Modification
Response time, voltage on at full speed	24 MS	(Coils are rated for continuous duty)			
Weight	2 lbs .	*115 AC - In rush current . 232 amps / Holding current . 098 amps			
BORE \& KEYWAY DATA					
Bore A	Pin Hole B	Mig. Hid		Set	ws D
$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{aligned} & 0.115-0.135 \\ & (2.92-3.43) \end{aligned}$	$\begin{aligned} & 3 x \text { \#6-32 } \\ & \text { on } .938 \end{aligned}$		Lg. Hex	0.188 Set Screw
METRIC BORES					
$\begin{gathered} 0.3937-0.3951 \\ (10.0 \mathrm{Hg}) \end{gathered}$	$\begin{aligned} & 0.117-0.121 \\ & (2.97-3.08) \end{aligned}$	3X M4 x 23.83		$\begin{array}{r} \text { M4 } \\ \text { Lg. } \mathrm{Hex} \end{array}$	$\begin{aligned} & x 5.0 \\ & \text { Set Screw } \end{aligned}$

Standard CB-4 Clutch/Brake

Component Parts

Standard CB-5 Clutch/Brake

Dimensions \& Specifications

PERFORMANCE	
Static torque	$250 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	$45 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-back holding capability	$160 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$0.1950 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	32 lbs.
Maximum operating speed	750 RPM
Response time, voltage on at full speed	27 MS
Weight	3 lbs.

ELECTRICAL DATA			
Voltage	Gurrent (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.103^{*}	280.0	Standard
24 DC	0.325	74.0	Standard
12 DC	0.732	16.4	Modification
90 DC	0.096	936.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current . 232 amps / Holding current .098 amps

BORE \& KEYWAY DATA			
Bore A	Pin Hole B	Mtg. Hole C	Set Screws D
$\begin{gathered} 0.5005-0.5025 \\ (12.712-12.764) \end{gathered}$	$\begin{aligned} & 0.124-0.129 \\ & (3.14-3.28) \end{aligned}$	$\begin{aligned} & 3 x \# 10-32 \text { UNF-2B } \\ & \text { on } 1.25 \mathrm{BC} \end{aligned}$	\#8-32 x 0.25 Lg. Hex Skt. Set Screw
METRIC BORES			
$\begin{aligned} & 0.4724-4741 \\ & (12.0 \mathrm{Hg}) \end{aligned}$	$\begin{aligned} & 0.117-0.121 \\ & (2.97-3.08) \end{aligned}$	$\begin{aligned} & 3 \mathrm{X} \text { M } 5 \times 0.8 \text { on } \\ & 31.75 \mathrm{BC} \end{aligned}$	M $4 \times 0.7 \times 6.0$ Lg. Hex Skt. Set Screw

Standard CB-5 Clutch/Brake
 Component Parts

COMPONENT PARTS				COMPONENT PARTS			
Item	Description	Rotation	Part No. *	Item	Description	Rotation	Part No. *
1	Retaining Ring		748-1-0030	10	$\begin{aligned} & \text { Coil Assembly } \\ & 24 \text { DC } \\ & 115 \text { AC } \\ & 12 \text { DC } \\ & 90 \text { DC } \end{aligned}$		$\begin{aligned} & 101-5-0003 \\ & 101-5-0006 \\ & 101-5-0002 \\ & 101-5-0005 \end{aligned}$
2	Input Hub Anti-Overrun		$\begin{aligned} & 540-5-0007 \\ & (540-5-0018) \end{aligned}$				
3	Control Collar (Specify No. of Stops) Standard - 1.8° Adjustable	CW/CCW	266-5-0801				
				11	Actuator Assembly	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 101-5-0058 \\ & 101-5-0059 \end{aligned}$
4	Drive Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	808-5-0001				
			808-5-0002	12	Anti-Back Hub		$\begin{aligned} & 540-5-0006 \\ & (540-5-0047) \end{aligned}$
5	Brake Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-5-0001 \\ & 808-5-0002 \end{aligned}$				
				13	Dust Cover (AB Spring)		287-5-9002
6	Anti-Back Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-5-0005 \\ & 808-5-0006 \end{aligned}$	14	Brake Hub		540-5-0004
7	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	808-5-0003	15	Pan Head Machine Screw (Sems) (2)		797-1-0414
			$808-5-0004$	16	Spring Pin		679-1-0024
8	Plate Assembly	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 686-5-0001 \\ & 686-5-0002 \end{aligned}$	17	Headless Socket Set Screw		$\begin{aligned} & 797-1-0153 \\ & (797-1-0769) \end{aligned}$
9	Output Assembly with Anti-Overrun (0.50 Bore) (12.0 mm Bore)		$\begin{aligned} & 824-5-0002 \\ & (824-5-0107) \end{aligned}$	18	Flat Head Socket Cap Screw (3)		797-1-0322
				19	Spacer		807-1-9002

[^4]
Standard CB-6 Clutch/Brake

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see pages 81 \& 82 .

PERFORMANCE	
Static torque	$500 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	$300 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-back holding capability	$300 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$1.718 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	63 lbs.
Maximum operating speed	500 RPM
Response time, voltage on at full speed	45 MS
Weight	7 lbs.

ELECTRICAL DATA			
	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.334^{*}	57.5	Standard
24 DC	0.586	41.0	Standard
12 DC	1.150	10.4	Modification
90 DC	0.151	598.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 1.1 amps / Holding current 0.2 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 0.7505-0.7525 \\ (19.062-19.114) \end{gathered}$	$\begin{aligned} & 0.1885-0.1905 \\ & (4.787-4.839) \end{aligned}$	$\begin{gathered} 0.837-0.842 \\ (21.25-21.39) \end{gathered}$	$2 x \text { \#10-32 UNC-2B x } 0.19$ Lg. Hex Skt. Set Screw	$\begin{gathered} 3 x \text { \#1/4-20 UNC-2B } \\ \text { 2.062 BC } \end{gathered}$
$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	-	-	$\begin{gathered} 2 x ~ 0.187-0.192 \text { Hole } \\ (4.74-4.88) \end{gathered}$	$\begin{gathered} 3 x \text { \#1/4-20 UNC-2B } \\ \text { 2.062 BC } \end{gathered}$
METRIC BORES				
$\begin{aligned} & 0.7874-0.7894 \\ & (20.0 \mathrm{Hg}) \end{aligned}$	$\begin{aligned} & 0.2356-0.2368 \\ & (5.985-6.015) \end{aligned}$	$\begin{gathered} 0.8976-0.9015 \\ (22.800-22.900) \end{gathered}$	$2 x$ M5 x 0.8×5.0 Lg. Hex Skt. Set Screw	$3 x$ M6 x 1.0 holes on 52.38 BC
$\begin{gathered} 0.9842-0.9862 \\ (25.0 \mathrm{H} 9) \end{gathered}$	-	-	$\begin{gathered} 2 x \text { 4.87-5.14 Hole } \\ (.191-.203) \end{gathered}$	$\begin{gathered} 3 \times \text { M6 x } 1.0 \text { holes } \\ \text { on } 52.38 \mathrm{BC} \end{gathered}$

Standard CB-6 Clutch/Brake

Component Parts

Standard CB-7 Clutch/Brake

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see pages $81 \& 82$.

PERFORMANCE	
Static torque	$1,500 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	$600 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-back holding capability	$600 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$6.75 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	300 lbs.
Maximum operating speed	400 RPM
Response time, voltage on at full speed	50 MS
Weight	12 lbs.

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.334^{*}	57.5	Standard
24 DC	0.586	41.0	Standard
12 DC	1.150	10.4	Modification
90 DC	0.151	598.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 1.1 amps / Holding current 0.2 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	$\begin{aligned} & 0.251-0.253 \\ & (6.37-6.43) \end{aligned}$	$\begin{gathered} 1.114-1.124 \\ (28.29-28.55) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \mathrm{x} \# 5 / 16-18 \text { UNC-2B } \\ & \text { on } 3.375 \text { BC } \end{aligned}$
$\begin{gathered} 1.2505-1.2525 \\ (31.762-31.814) \end{gathered}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.389-1.399 \\ (35.28-35.54) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \mathrm{x} \# 5 / 16-18 \text { UNC-2B } \\ & \text { on } 3.375 \text { BC } \end{aligned}$
$\begin{gathered} 1.5005-1.5025 \\ (38.112-38.164) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.605-1.615 \\ (40.76-41.02) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x \neq 5 / 16-18$ UNC-2B on 3.375 BC
METRIC BORES				
$\begin{aligned} & 0.9843-0.9863 \\ & (25.0 \mathrm{H9}) \end{aligned}$	$\begin{aligned} & 0.3143-0.3156 \\ & (7.983-8.017) \end{aligned}$	$\begin{aligned} & 1.1142-1.1241 \\ & (28.300-28.552) \end{aligned}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{aligned} & \text { 6x M8 x } 1.25 \\ & \text { on } 85.73 \text { BC } \end{aligned}$
$\begin{gathered} 1.1811-1.1831 \\ (30.0 \mathrm{H} 9) \end{gathered}$	$\begin{aligned} & 0.3143-0.3156 \\ & (7.983-8.017) \end{aligned}$	$\begin{gathered} 1.3110-1.3209 \\ (33.299-33.551) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \times \text { M8 x } 1.25 \\ & \text { on } 85.73 \text { BC } \end{aligned}$
$\begin{aligned} & 1.3780-1.3804 \\ & (35.0 \mathrm{H9}) \end{aligned}$	$\begin{aligned} & 0.3930-0.3944 \\ & (9.982-10.018) \end{aligned}$	$\begin{gathered} 1.5079-1.5182 \\ (38.300-38.563) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$6 x$ M8 x 1.25 on 85.73 BC

DIStBIBUIDOR

Standard CB-7 Clutch/Brake
 Component Parts

For assembly and disassembly see page 85.

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
1	Retaining Ring		748-1-0039
2	Input Hub Anti-Overrun		$\begin{aligned} & 540-8-0009 \\ & (540-7-0048) \end{aligned}$
3	Control Collar (Specify No. of Stops) Standard - 1.6° Adjustable	CW/CCW	266-1-0026
4	Drive Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0007 \\ & 808-8-0008 \end{aligned}$
5	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0009 \\ & 808-8-0010 \end{aligned}$
6	Output Assembly 1.00 1.50 Anti-Overrun 1.25 (25.0 mm Bore) (30.0 mm Bore) (35.0 mm Bore)		824-7-0114 824-7-0117 824-7-0115 (824-7-0123) (824-7-0125) (824-7-0127)
7	Anti-Back Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-1-0012 \\ & 808-1-0013 \end{aligned}$
8	Brake Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0005 \\ & 808-8-0006 \end{aligned}$
9	Brake Hub		540-7-0030

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
10	Plate Assembly	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 686-8-0051 \\ & 686-8-0052 \end{aligned}$
11	Button Head Cap Screw (6)		797-1-0064
12	Actuator Assembly (includes plunger)	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 102-1-0032 \\ & 102-1-0033 \end{aligned}$
13	Coil Assembly "D" Frame 24 DC 115 AC 12 DC 90 DC		$\begin{aligned} & 101-1-0028 \\ & 101-1-0058 \\ & 101-1-0027 \\ & 101-1-0030 \end{aligned}$
13a	Flatwasher (2)		950-1-0006
13b	Lockwasher-Split (2)		950-1-0020
13c	Head Cap Screw (2)		797-1-0044
14	Headless Socket Set Screw (2)		797-1-0174
15	Shim		807-1-0002
16	$\begin{aligned} & \text { Shim } \\ & .005 \\ & .010 \end{aligned}$		$\begin{aligned} & 87-8-0001 \\ & 87-8-0004 \end{aligned}$
17	Spacer		807-1-9001
	used as required		

* Part numbers in () are metric
www.thomsonlinear.com

Standard CB-8 Clutch/Brake

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see pages 81 \& 82 .

PERFORMANCE	
Static torque	$2,500 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	600 lbs .-in.
Maximum anti-back holding capability	$600 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$12.84 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	300 lbs.
Maximum operating speed	300 RPM
Response time, voltage on at full speed	50 MS
Weight	15 lbs.

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.334^{*}	57.5	Standard
24 DC	0.586	41.0	Standard
12 DC	1.150	10.4	Modification
90 DC	0.151	598.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 1.1 amps / Holding current 0.2 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{aligned} & 1.0005-1.0025^{*} \\ & (25.412-25.464) \end{aligned}$	$\begin{aligned} & 0.251-0.253 \\ & (6.37-6.43) \end{aligned}$	$\begin{gathered} 1.114-1.124 \\ (28.29-28.55) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	6x \#5/16-18 UNC-2B on 3.375 BC
$\begin{gathered} 1.2505-1.2525 \\ (31.762-31.814) \end{gathered}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.389-1.399 \\ (35.28-35.54) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$6 x \neq 5 / 16-18$ UNC-2B on 3.375 BC
$\begin{aligned} & 1.3755-1.3775^{*} \\ & (34.937-34.989) \end{aligned}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.518-1.528 \\ (38.55-38.82) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	6x \#5/16-18 UNC-2B on 3.375 BC
$\begin{gathered} 1.5005-1.5025 \\ (38.112-38.164) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.605-1.615 \\ (40.76-41.02) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.31$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \mathrm{x} \# 5 / 16-18 \text { UNC-2B } \\ & \text { on } 3.375 \mathrm{BC} \end{aligned}$
METRIC BORES				
$\begin{aligned} & 1.3780-1.3804 \\ & (35.0 \mathrm{H9}) \end{aligned}$	$\begin{aligned} & 0.3930-0.3944 \\ & (9.982-10.018) \end{aligned}$	$\begin{gathered} 1.5079-1.5182 \\ (38.300-38.563) \end{gathered}$	2x M6 x 1.0×10.0 Lg. Hex Skt. Set Screw	$6 \times \mathrm{M} 8 \times 1.25$ on 85.73 BC
$\begin{gathered} 1.5784-1.5772 \\ (40.0 \mathrm{H9}) \end{gathered}$	-	-	2x M6 x 1.0×10.0 Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 \times \text { M8 x } 1.25 \\ & \text { on } 85.73 \text { BC } \end{aligned}$

[^5]DIStBIBUIDOR

Standard CB-8 Clutch/Brake
 Component Parts

For assembly and disassembly see page 85 .

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
1	Retaining Ring		748-1-0039
2	Input Hub Anti-Overrun		$\begin{aligned} & 540-8-0014 \\ & (540-8-0041) \end{aligned}$
3	Control Collar (Specify No. of Stops) Standard - 1.6° Adjustable	CW/CCW	266-8-0251
4	Drive Spring Standard	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0003 \\ & 808-8-0004 \end{aligned}$
5	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0025 \\ & 808-8-0026 \end{aligned}$
6	$\begin{aligned} & \text { Output Assembly } \\ & 1.00 \\ & 1.50 \\ & \text { Anti-Overrun } \\ & 1.38 \\ & 1.25 \\ & \text { (35.0 mm Bore) } \\ & (40.0 \mathrm{~mm} \text { Bore) } \end{aligned}$		$\begin{aligned} & 824-8-0329 \\ & 824-8-0326 \\ & 824-8-0327 \\ & 824-8-0328 \\ & (824-8-0420) \\ & \text { A/R } \end{aligned}$
7	Anti-Back Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0025 \\ & 808-8-0026 \end{aligned}$
8	Brake Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-8-0003 \\ & 808-8-0004 \end{aligned}$

* Part numbers in () are metric

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
9	Brake Hub		540-8-0016
10	Plate Assembly	CW	686-8-0051
11	Button Head Cap Screw (6)		797-1-0064
12	Actuator Assembly (includes plunger)	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 102-1-0032 \\ & 102-1-0033 \end{aligned}$
13	Coil Assembly "D" Frame 24 DC 115 AC 12 DC 90 DC		$\begin{aligned} & 101-1-0028 \\ & 101-1-0058 \\ & 101-1-0027 \\ & 101-1-0030 \end{aligned}$
13a	Flatwasher (2)		950-1-0006
13b	Lockwasher-Split (2)		950-1-0020
13c	Head Cap Screw (2)		797-1-0044
14	Headless Socket Set Screw (2)		$\begin{aligned} & 797-1-0174 \\ & (797-1-0784) \end{aligned}$
15	Shim (2)		807-1-0002
16	$\begin{aligned} & \text { Shim } \\ & .005 \\ & .010 \end{aligned}$		$\begin{aligned} & 807-8-0001 \\ & 807-8-0004 \end{aligned}$
17	Spacer		807-1-9001

Standard CB-10 Clutch/Brake

Dimensions \& Specifications

Dimensions (mm)

Mounting requirements see pages 81 \& 82 .

PERFORMANCE	
Static torque	$5,000 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-overrun holding capability	$1,200 \mathrm{lbs} .-\mathrm{in}$.
Maximum anti-back holding capability	$1,200 \mathrm{lbs} .-\mathrm{in}$.
Inertia, rotating parts	$48.0 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	500 lbs.
Maximum operating speed	200 RPM
Response time, voltage on at full speed	70 MS
Weight	27 lbs.

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	174^{*}	14.5	Standard
24 DC	0.94	25.4	Standard
12 DC	1.86	6.43	Modification
90 DC	0.24	378.6	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 2.9 amps / Holding current 0.1 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 1.5005-1.5025 \\ (38.112-38.164) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.669-1.679 \\ (42.39-42.65) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.25$ Lg. Hex Skt. Set Screw	$\begin{aligned} & \text { 6x \#1/4-20 UNC-2B 0.50 DP } \\ & \text { on } 3.417 \mathrm{BC} \end{aligned}$
$\begin{gathered} 1.6255-1.6275 \\ (41.287-41.339) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.796-1.806 \\ (45.61-45.88) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.25$ Lg. Hex Skt. Set Screw	$\begin{aligned} & \text { 6x \#1/4-20 UNC-2B 0.50 DP } \\ & \text { on } 3.417 \text { BC } \end{aligned}$
$\begin{gathered} 1.7505-1.7525 \\ (44.462-44.514) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.922-1.932 \\ (48.81-49.08) \end{gathered}$	$2 x \# 1 / 4-20 \times 0.25$ Lg. Hex Skt. Set Screw	$\begin{aligned} & 6 x \text { \#1/4-20 UNC-2B } 0.50 \text { DP } \\ & \text { on } 3.417 \text { BC } \end{aligned}$
METRIC BORES				
$\begin{aligned} & 1.5749-1.5772 \\ & (40.0 \mathrm{Hg}) \end{aligned}$	$\begin{gathered} 0.4717-0.4732 \\ (11.979-12.021) \end{gathered}$	$\begin{gathered} 1.705-1.712 \\ (43.300-43.491) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{gathered} \text { 6x M8 x } 1.2512 .70 \mathrm{DP} \\ \text { on } 86.79 \mathrm{BC} \end{gathered}$
$\begin{aligned} & 1.7717-1.7740 \\ & (45.0 \mathrm{H9}) \end{aligned}$	$\begin{gathered} 0.5504-0.5520 \\ (13.980-14.021) \end{gathered}$	$\begin{gathered} 1.922-1.929 \\ (48.80-49.00) \end{gathered}$	$2 \times \mathrm{M} 6 \times 1.0 \times 10.0$ Lg. Hex Skt. Set Screw	$\begin{gathered} 6 \mathrm{x} \mathrm{M} 8 \times 1.2512 .70 \mathrm{DP} \\ \text { on } 86.79 \mathrm{BC} \end{gathered}$

distribuidor

Standard CB-10 Clutch/Brake

Component Parts

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
1	Retaining Ring-Truarc		748-1-0020
2	Input Hub Anti-Overrun		$\begin{aligned} & 541-0-0002 \\ & (541-0-0012) \end{aligned}$
3	Retaining Ring		748-1-0217
4	Spacer		807-0-0013
5	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-0-0001 \\ & 808-0-0002 \end{aligned}$
6	Control Collar (Specify No. of Stops) Standard - 1.5° Adjustable	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 266-0-0127 \\ & 266-0-0151 \end{aligned}$
7	Drive Spring Standard	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-0-0009 \\ & 808-0-0010 \end{aligned}$
8	Shaft Assembly 1.500 1.625 Anti-Overrun 1.750 (40.0 mm Bore) (45.0 mm Bore)		$\begin{aligned} & 824-0-0005 \\ & 824-0-0006 \\ & \\ & 824-0-0007 \\ & (824-0-0039) \\ & (824-0-0040) \end{aligned}$

[^6]For assembly and disassembly see page 85 .

COMPONENT PARTS			
Item	Description	Rotation	Part No. *
9	Headless Set Screw (2)		$\begin{aligned} & 797-1-0173 \\ & (797-1-0784) \end{aligned}$
10	Skt. Head Cap Screw (6)		797-1-0055
11	Actuator Plate Assembly 11a Plate 11b Pivot Pin 11c Lock Nut	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 101-0-0052 \\ & 101-0-0053 \\ & 686-0-0001 \\ & 679-0-0001 \\ & 661-1-0010 \end{aligned}$
12	$\begin{aligned} & \text { DC Coil Assembly } \\ & 24 \text { DC } \\ & 12 \text { AC } \\ & 90 \text { DC } \end{aligned}$		$\begin{aligned} & 101-0-0003 \\ & 101-0-0002 \\ & 101-0-0004 \end{aligned}$
13	Actuator Lever		102-0-9001
14	Brake Hub		541-0-0013
15	Brake Spring	CW CCW	$\begin{aligned} & 808-0-0009 \\ & 808-0-0010 \end{aligned}$
16	Anti-Back Spring	CW CCW	$\begin{aligned} & 808-0-0007 \\ & 808-0-0008 \end{aligned}$
17	$\begin{aligned} & \text { AC Coil Assembly } \\ & 115 \mathrm{AC} \\ & 115 \text { AC } \end{aligned}$	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 101-0-0005 \\ & 101-0-0054 \end{aligned}$
20	AC Actuator Return Assembly		101-0-0009
21	Head Cap Screw (2)		797-1-0044
22	Lockwasher-Split (2)		950-1-0020

SAC Series

Solenoid-Actuated, Wrap Spring Clutches

The SAC Series features four models of pre-assembled, solenoid-actuated, wrap spring clutch packages. SAC units operate from a single AC or DC pulse to accurately start loads at speeds up to 1800 RPM, depending on size. Adjustable stop control collars provide easy and accurate output stop position settings. A typical SAC Series clutch will bring the load up to speed within 3 milliseconds. They are easy to interface with PCs and industrial control systems. SAC Series clutches are accurate, repeatable, fast acting, simple, maintenance free and low cost.

Features

- Available in four standard model sizes
- Solenoid-actuated, wrap spring clutch package
- Torque range from 25 lbs .-in. to $500 \mathrm{lbs} .-\mathrm{in}$.
- 1,2 and 4 stops standard—other stops available, up to 24 maximum
- Hub input (shaft input available, consult factory)
- RoHS compliant

Typical Applications

- Computer peripherals
- Business machines
- Packaging equipment
- Check cancellers
- Riveters

How to Order

OPTIONS	
Dust Covers	See page 60
Stop Collars	See page 61
Pneumatic Actuators	

SAC Series

Wrap Spring Clutches

PERFORMANCE				
	SAC-2	SAC-4	SAC-5	SAC-6
Static torque	$\begin{aligned} & 25 \mathrm{lbs} .-\mathrm{in} . \\ & (2.825 \mathrm{Nm}) \end{aligned}$	120 lbs .-in. (13.56 Nm)	250 lbs.-in. (28.25 Nm)	500 lbs .-in. (56.5 Nm)
Shaft bores (standard)	$\begin{aligned} & 0.250 \\ & (6.35 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.525 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.500 \\ & (12.70 \mathrm{~mm}) \end{aligned}$	0.750 or 1.00 (19.05 mm or 25.40 mm)
RPM (maximum)	1,800 RPM	1,200 RPM	750 RPM	500 RPM
Inertia, rotating parts	$0.0207 \mathrm{lbs} .-\mathrm{in} .^{2}$	$0.0636 \mathrm{lbs} .-\mathrm{in} .^{2}$	0.1950 lbs.-in. ${ }^{2}$	$1.718 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	7.5 lbs .	14.0 lbs .	32.0 lbs.	63.0 lbs .
Response time, voltage on at full speed	20 MS	24 MS	27 MS	45 MS
Weight	1 lbs.	2 lbs.	3 lbs .	7 lbs .

See page 74 for Minimum Inertia Requirements. See pages 81 \& 82 for Mounting Requirements.

RPM vs. SHAFT BORE			
Size	Max. RPM	Shaft Bores Standard in (mm)	Shaft Bores Metric in (mm)
SAC-2	1,800	$1 / 4^{\prime \prime}(6.35)$	0.2362-0.2374 (6.0)
SAC-4	1,200	$3 / 8{ }^{\prime \prime}$ (9.525)	0.3937-0.3951 (10.0)
SAC-5	750	$1 / 2^{\prime \prime}$ (12.70)	0.4724-0.4741 (12.0)
SAC-6	500	$3 / 4^{\prime \prime}$ or $1^{\prime \prime}$ (19.05 or 25.40)	$\begin{aligned} & 0.7874-0.7894(20) \text { or } \\ & 0.9842-0.9862(25) \end{aligned}$

SAC-2, SAC-4 \& SAC-5 Clutches

Dimensions

dIMENSIONS												
Model	Torque (Ibs.-in.)	B Nom.	$\begin{aligned} & \hline \text { C } \\ & \text { Nom. } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { D } \\ \text { Nom. } \end{array}$	E	F	G Nom.	H Nom.	$\begin{aligned} & \hline \text { J } \\ & \text { Nom. } \end{aligned}$		K Nom.	$\begin{aligned} & \text { L } \\ & \text { Nom. } \end{aligned}$
SAC-2	25	$\begin{aligned} & 3.39 \\ & (86.11) \end{aligned}$	$\begin{aligned} & 2.50 \\ & (63.50) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (50.80) \end{aligned}$	$\begin{aligned} & 1.00 \\ & (25.40) \end{aligned}$	$\begin{aligned} & 1.95 \\ & \text { (49.53) } \end{aligned}$	$\begin{aligned} & 0.71 \\ & \text { (18.03) } \end{aligned}$	20.0°	$\begin{aligned} & 0.201 \mathrm{~W} \times 0.375 \mathrm{~L} \\ & (5.10 \times 9.53) \end{aligned}$		$\begin{aligned} & 0.194 \\ & (4.93) \end{aligned}$	$\begin{aligned} & 2.125 \\ & (53.98) \end{aligned}$
SAC-4	120	$\begin{aligned} & 4.10 \\ & \text { (104.14) } \end{aligned}$	$\begin{aligned} & 3.38 \\ & (85.85) \end{aligned}$	$\begin{aligned} & 2.38 \\ & (50.45) \end{aligned}$	$\begin{aligned} & 1.00 \\ & (25.40) \end{aligned}$	$\begin{aligned} & 2.56 \\ & (65.02) \end{aligned}$	$\begin{aligned} & 0.807 \\ & (20.50) \end{aligned}$	17.5°	$\begin{aligned} & .26 \mathrm{~W} \times 50 \mathrm{~L} \\ & (6.60 \times 12.70) \end{aligned}$		$\begin{aligned} & 0.187 \\ & (4.75) \end{aligned}$	$\begin{aligned} & 2.125 \\ & (53.98) \end{aligned}$
SAC-5	250	$\begin{aligned} & 4.56 \\ & (115.82) \end{aligned}$	$\begin{aligned} & 4.37 \\ & (111.00) \end{aligned}$	$\begin{aligned} & 2.62 \\ & (66.55) \end{aligned}$	$\begin{aligned} & 1.31 \\ & (33.27) \end{aligned}$	$\begin{aligned} & 2.50 \\ & (63.50) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23.11) \end{aligned}$	20.0°	$\begin{aligned} & .26 \mathrm{~W} \times .50 \mathrm{~L} \\ & (6.60 \times 12.70) \end{aligned}$		$\begin{aligned} & 0.187 \\ & (4.75) \end{aligned}$	$\begin{aligned} & 3.125 \\ & (79.38) \end{aligned}$
Model	Torque (Ibs.-in.)	$\begin{array}{\|l\|} \hline \text { P } \\ \text { Nom. } \end{array}$	R Nom.	$\begin{array}{\|l\|} \hline \text { S } \\ \text { Nom. } \end{array}$	$\begin{array}{\|l\|} \hline \text { T } \\ \text { Nom. } \end{array}$	$\begin{array}{\|l\|} \hline \text { U } \\ \text { Min. } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{V} \\ \text { Nom. } \end{array}$	$\begin{array}{\|l\|} \hline \text { W } \\ \text { Max. } \end{array}$	X Max.	$\begin{array}{\|l\|} \hline \mathbf{Y} \\ \text { Nom. } \end{array}$		
SAC-2	25	$\begin{aligned} & 0.09 \\ & (2.29) \end{aligned}$	$\begin{aligned} & 1.188 \\ & (30.17) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.525) \end{aligned}$	$\begin{aligned} & 0.405 \\ & (10.29) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (3.30) \end{aligned}$	$\begin{aligned} & 0.215 \\ & (5.46) \end{aligned}$	$\begin{aligned} & 0.62 \\ & (15.75) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (43.18) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (2.29) \end{aligned}$		
SAC-4	120	$\begin{aligned} & 0.15 \\ & (3.81) \end{aligned}$	$\begin{aligned} & 1.249 \\ & (31.72) \end{aligned}$	$\begin{aligned} & 0.500 \\ & (12.70) \end{aligned}$	$\begin{aligned} & 0.83 \\ & \text { (21.08) } \end{aligned}$	$\begin{aligned} & 0.51 \\ & (12.95) \end{aligned}$	$\begin{aligned} & 0.330 \\ & (8.38) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.05) \end{aligned}$	$\begin{aligned} & 1.94 \\ & (49.28) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (2.29) \end{aligned}$		
SAC-5	250	$\begin{aligned} & 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 1.562 \\ & (39.67) \end{aligned}$	$\begin{aligned} & 0.625 \\ & (15.87) \end{aligned}$	$\begin{aligned} & 1.09 \\ & (27.69) \end{aligned}$	$\begin{aligned} & 0.73 \\ & \text { (18.54) } \end{aligned}$	$\begin{aligned} & 0.470 \\ & \text { (11.94) } \end{aligned}$	$\begin{aligned} & 1.00 \\ & (25.40) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (50.80) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (2.29) \end{aligned}$		

*See bore data on next page

SAC-2, SAC-4 \& SAC-5 Clutches

Specifications

PERFORMANCE			
	SAC-2	SAC-4	SAC-5
Static torque	$\begin{aligned} & 25 \mathrm{lbs} .-\mathrm{in} . \\ & (2.825 \mathrm{Nm}) \end{aligned}$	120 lbs.-in. (13.56 Nm)	$250 \mathrm{lbs} .-\mathrm{in}$. (28.25 Nm)
Shaft hores (standard)	$\begin{aligned} & 0.250 \\ & (6.35 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9.525 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & 0.500 \\ & (12.70 \mathrm{~mm}) \end{aligned}$
RPM (maximum)	1,800 RPM	1,200 RPM	750 RPM
Inertia, rotating parts	$0.0207 \mathrm{lbs} .-\mathrm{in} .^{2}$	$0.0636 \mathrm{lbs} .-\mathrm{in} .^{2}$	0.1950 lbs.-in. ${ }^{2}$
Maximum radial bearing load at maximum speed	7.5 lbs .	14 lbs .	32 lbs .
Response time, voltage on at full speed	20 MS	24 MS	27 MS
Weight	1 lbs .	2 lbs .	3 lbs .

SAC-2 ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
120 AC 60 Hz	0.104^{*}	825	Standard
24 DC	0.230	104	Standard
12 DC	0.460	26	Modification
90 DC	0.059	1510	Modification

(Coils are rated for continuous duty)
*120 AC - In rush current .10 amps / Holding current .04 amps

SAC-4 and 5 ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.103^{*}	280	Standard
24 DC	0.325	74	Standard
12 DC	0.732	16.4	Modification
90 DC	0.096	936	Modification
(Coils are rated for continuous duty)			
*115 AC - In rush current .232 amps / Holding current .098 amps			

BORE \& KEYWAY DATA			
Model	Bore A	M	Mtg. Holes N
SAC-2	$\begin{aligned} & 0.2505-0.2525 \\ & (6.362-6.414) \end{aligned}$	$\begin{aligned} & 0.061-0.065 \\ & (1.55-1.65) \end{aligned}$	$\begin{gathered} 3 \times 6-32 \text { UNC-2B } \\ \text { on } .938 \text { BC } \end{gathered}$
SAC-4	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{aligned} & 0.124-0.129 \\ & (3.14-3.28) \end{aligned}$	$\begin{gathered} 3 \times 6-32 \text { UNC-2B } \\ \text { on } .938 \text { BC } \end{gathered}$
SAC-5	$\begin{gathered} 0.5005-0.5025 \\ (12.712-12.764) \end{gathered}$	$\begin{aligned} & 0.124-0.129 \\ & (3.14-3.28) \end{aligned}$	$\begin{gathered} 3 \times 10-32 \text { UNC-2B } \\ \text { on } 1.250 \mathrm{BC} \end{gathered}$
METRIC BORES			
SAC-2	$\begin{gathered} 0.2362-0.2374 \\ (6.0 \mathrm{H} 9) \end{gathered}$	$\begin{gathered} 2 \times 1.49-1.58 \\ (2 \times 0.059-0.062) \end{gathered}$	$\begin{aligned} & 3 \times \mathrm{M} 4 \times 0.7 \text { on } \\ & 23.83 \mathrm{BC} \end{aligned}$
SAC-4	$\begin{gathered} 0.3937-0.3951 \\ (10.0 \mathrm{Hg}) \end{gathered}$	$\begin{gathered} 2 \times 2.97-3.08 \\ (2 \times 0.117-0.121) \end{gathered}$	$\begin{aligned} & 3 \times \mathrm{M} 4 \times 0.7 \text { on } \\ & 23.83 \mathrm{BC} \end{aligned}$
SAC-5	$\begin{aligned} & 0.4724-0.4741 \\ & (12.0 \mathrm{Hg}) \end{aligned}$	$\begin{gathered} 2 \times 2.97-3.08 \\ (2 \times 0.117-0.121) \end{gathered}$	$\begin{gathered} 3 \times \mathrm{M} 5 \times 0.8 \text { on } \\ 31.75 \text { BC } \end{gathered}$

*For assembly and disassembly see page 86

SAC-2, SAC-4 \& SAC-5 Clutches

Component Parts

For assembly and disassembly see page 86.

SAC-2, SAC-4 \& SAC-5 Clutches

Component Parts

COMPONENTS				
Item	Description	SAC-2	SAC-4	SAC-5
1	Retaining Ring	748-1-0085	748-1-0027	748-1-0030
2	Input Hub	540-2-0004	540-4-0021	540-5-0007
3	Stop Collar (Specify no. of stops) Standard CW (1) Standard CCW (1)	$\begin{aligned} & 266-2-0001 \\ & 266-2-0031 \end{aligned}$	$\begin{aligned} & 266-4-0051 \\ & 266-4-0081 \end{aligned}$	$\begin{aligned} & 266-5-0801 \\ & 266-5-0801 \end{aligned}$
4	Drive Spring CW Drive Spring CCW	$\begin{aligned} & 808-2-0108 \\ & 808-2-0109 \end{aligned}$	$\begin{aligned} & 808-4-0066 \\ & 808-4-0059 \end{aligned}$	$\begin{aligned} & 808-5-0001 \\ & 808-5-0002 \end{aligned}$
5	Plate Assembly CW Plate Assembly CCW	$\begin{aligned} & 686-2-0001 \\ & 686-2-0002 \end{aligned}$	$\begin{aligned} & 686-4-0001 \\ & 686-4-0002 \end{aligned}$	$\begin{aligned} & 686-5-0001 \\ & 686-5-0002 \end{aligned}$
6	Output Assembly	824-2-0006	824-4-0015	824-5-0002
7	Coil Assembly (Specify voltage) 24 DC 115 AC *12 DC (optional) *90 DC (optional)	$\begin{aligned} & 275-1-0003 \\ & 275-1-0006 \\ & 275-1-0002 \\ & 275-1-0005 \end{aligned}$	$\begin{aligned} & 275-1-0163 \\ & 275-1-0166 \\ & 275-1-0162 \\ & 275-1-0165 \end{aligned}$	$\begin{aligned} & 101-5-0003 \\ & 101-5-0006 \\ & 101-5-0002 \\ & 101-5-0005 \end{aligned}$
8	Actuator Assembly (kit w/plunger)	101-2-0001	102-4-0005	$\begin{aligned} & 101-5-0058 \text { CW } \\ & 101-5-0059 \text { CCW } \end{aligned}$
9	Flat Head Socket Cap Screw (3)	797-1-0311	797-1-0311	797-1-0322
10	Pan Head Machine Screw (Sems) (2)	797-1-0415	797-1-0412	797-1-0414
11	Plate Hub	540-2-0006	540-4-0015	540-5-0004
12	Grooveless Retaining Ring	748-1-0384	748-1-0377	748-1-0398
13	Sleeve	803-2-003	803-4-0010	803-5-0014

COMPONENTS				
Item	Description	SAC-2	SAC-4	SAC-5
A	Anti-Overrun Spring CW Anti-Overrun Spring CCW	$\begin{aligned} & 808-2-0003 \\ & 808-2-0004 \end{aligned}$	$\begin{aligned} & 808-4-0022 \\ & 808-4-0023 \end{aligned}$	$\begin{aligned} & 808-5-0003 \\ & 808-5-0004 \end{aligned}$
B	Anti-Back Spring CW Anti-Back Spring CCW	$\begin{aligned} & 808-2-0004 \\ & 808-2-0003 \end{aligned}$	$\begin{aligned} & 808-4-0018 \\ & 808-4-0019 \end{aligned}$	$\begin{aligned} & 808-5-0005 \\ & 808-5-0006 \end{aligned}$
C	Actuator Limit Stop Actuator Limit Stop	$\begin{aligned} & 816-2-0001 \mathrm{CW} \\ & 816-2-0002 \mathrm{CCW} \end{aligned}$	$\begin{aligned} & 816-1-0003 \mathrm{CW} \\ & 816-1-0003 \mathrm{CCW} \end{aligned}$	$\begin{aligned} & 816-5-0013 \text { CW } \\ & 816-5-0013 \text { CCW } \end{aligned}$
D	Anti-Back Hub	540-2-0003	540-4-0018	540-5-0006
E	Spring Pin	679-1-0019	679-1-0022	679-1-0024
F	Headless Socket Set Screw	797-1-0152	797-1-0152	797-1-0153
G	Dust Cover (AB spring)	-	287-4-9002	287-5-9002
H	Hex Nut	-	661-1-0022	-
1	Pan Head Machine Screw (Sems)	-	797-1-0412	797-1-0414
J	Brake Spring	808-2-0101 CW 808-2-0100 CCW	808-4-0016 CW 808-4-0017 CCW	808-5-0001 CW 808-5-0002 CCW

SAC-6 Clutches

Dimensions

PERFORMANCE	
Static torque	$500 \mathrm{lbs} .-\mathrm{in} .(58.5 \mathrm{Nm})$
Inertia, rotating parts	$1.718 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum radial bearing load at maximum speed	63 lbs.
Maximum operating speed	500 RPM
Response time, voltage on at full speed	45 MS
Weight	7 lbs.

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms)	Status
115 AC 60 Hz	0.334^{*}	57.5	Standard
24 DC	0.586	41.0	Standard
12 DC	1.150	10.4	Modification
90 DC	0.151	598.0	Modification

(Coils are rated for continuous duty)
*115 AC - In rush current 1.1 amps / Holding current 0.2 amps

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 0.7505-0.7525 \\ (19.062-19.114) \end{gathered}$	$\begin{aligned} & 0.1885-0.1905 \\ & (4.787-4.839) \end{aligned}$	$\begin{gathered} 0.837-0.842 \\ (21.25-21.39) \end{gathered}$	2x \#10-32 UNC-2B x 0.19 (4.83) Lg. Hex Skt. Set Screw	$\begin{aligned} & 3 x \neq 1 / 4-20 \text { UNC-2B } \\ & \text { on } 2.062 \mathrm{BC} \end{aligned}$
$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	-	-	$\begin{gathered} 2 \times 0.187-0.192 \text { Hole } \\ (4.74-4.88) \end{gathered}$	$\begin{aligned} & 3 \mathrm{x} \# 1 / 4-20 \text { UNC-2B } \\ & \text { on } 2.062 \mathrm{BC} \end{aligned}$
METRIC BORES				
$\begin{gathered} .7874-.7894 \\ (20.0 \mathrm{Hg}) \end{gathered}$	$\begin{aligned} & .2356-2368 \\ & (5.985-6.015) \end{aligned}$	$\begin{gathered} .8976-.9015 \\ (22.800-22.900) \end{gathered}$	$2 x$ M5 x 0.8×5.00 Nom. Lg. Hex Skt. Set Screw	$\begin{aligned} & 3 \times \mathrm{M} 6 \times 1.0 \\ & \text { on } 52.38 \mathrm{BC} \end{aligned}$
$\begin{gathered} .9842-.9862 \\ (25.0 \mathrm{H}) \end{gathered}$	-	-	2x 4.87-5.14	$\begin{aligned} & 3 \times \mathrm{M} 6 \times 1.0 \\ & \text { on } 52.38 \mathrm{BC} \end{aligned}$

SAC-6

Component Parts

For assembly and disassembly see page 86 .

COMPONENT PARTS			
Item	Description	Rotation	Part No.
1	Retaining Ring		748-1-0038
2	Input Hub Anti-Overrun		540-6-0003
3	Control Collar (Specify No. of Stops) Standard - 1.8° Adjustable	CW/CCW	266-6-0726
4	Drive Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-6-0001 \\ & 808-6-0002 \end{aligned}$
5	Output Assembly 0.750 Bore 1.000 Bore		$\begin{aligned} & 824-6-0002 \\ & 824-6-0003 \end{aligned}$
6	Brake Hub		540-6-0001
7	Plate Assembly	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 686-6-0076 \\ & 686-6-0077 \end{aligned}$
8	Actuator Assembly Includes Plunger	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 102-1-0032 \\ & 102-1-0033 \end{aligned}$
9	Coil Assembly "D" Frame 24 DC 115 AC 12 DC 90 DC		$\begin{aligned} & 101-1-0028 \\ & 101-1-0058 \\ & 101-1-0027 \\ & 101-1-0030 \end{aligned}$

COMPONENT PARTS			
Item	Description	Rotation	Part No.
9 a	Flatwasher (2)		950-1-0006
9 b	Lockwasher - Split (2)		950-1-0020
9 c	Skt. Head Cap Screw (2)		797-1-0044
10	Headless Skt. Set Screw (0.75 Bore only)		797-1-0162
11	Button Head Cap Screw (3)		797-1-0243
12	Sleeve		803-6-0014
13	Shim (2)		807-1-0001
${ }^{*} 14$	Shim 0.005 0.010		$\begin{aligned} & 807-1-0014 \\ & 807-1-0017 \end{aligned}$
15	Spacer		807-1-9001
Options			
A	Anti-Overrun Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-6-0005 \\ & 808-60006 \end{aligned}$
B	Anti-Back Spring	$\begin{aligned} & \text { CW } \\ & \text { CCW } \end{aligned}$	$\begin{aligned} & 808-6-0003 \\ & 808-6-0004 \end{aligned}$

Shims used as required

PSI Series

Mechanically Actuated, Basic Wrap Spring Clutch Design

Ideal for Overrunning, Start-Stop and Single Revolution Applications.

PSI Series clutches represent the most fundamental wrap spring clutch design. As a start-stop or single revolution clutch, it is actuated simply by external blocking or releasing of the stop collar. As a simple overrunning clutch, it provides positive engagement of load to power source, but permits free overrunning when input power is slowed, stopped or reversed.
All units can be supplied with hub input/ shaft output or vice versa. Designed for applications where direct mechanical control is desired, the PSI Series clutch is a reliable, easily applied, low-cost solution.

Features

- Single revolution models can stop 10% of rated drive torque capacity
- Mechanically actuated clutches
- Five models fit $1 / 4$ " to $1 \frac{1}{2}$ " shafts
- Torque ranges from 25 lbs .-in. to $2500 \mathrm{lbs} .-\mathrm{in}$.
- Single revolution, start-stop or overrunning clutch functions
- RoHS compliant

Typical Applications

- Business machines
- Copying machines
- Material handling conveyors
- Packaging equipment
- Ribbon drives

How to Order

OPTIONS

PSI Series

Wrap Spring Clutch Specifications \& Capabilities

PERFORMANGE						
		PSI-2	PSI-4	PSI-5	PSI-6	PSI-8
Static torque		$\begin{aligned} & 25 \mathrm{lbs} .-\mathrm{in} . \\ & (2.825 \mathrm{Nm}) \end{aligned}$	120 lbs .-in. (13.56 Nm)	250 lbs.-in. (28.25 Nm)	500 lbs .-in. (56.5 Nm)	2500 lbs.-in. (282.5 Nm)
Inertia, rotating parts	$\begin{aligned} & \mathrm{SI} \\ & \mathrm{HI} \end{aligned}$	$\begin{aligned} & 0.006 \mathrm{lbs} .-\mathrm{in} .^{2} \\ & 0.008 \mathrm{lbs} . \mathrm{in} .^{2} \end{aligned}$	$\begin{aligned} & 0.015 \mathrm{lbs} .-\mathrm{in} .^{2} \\ & 0.023 \mathrm{lbs} .-\mathrm{in} .^{2} \end{aligned}$	$\begin{aligned} & 0.059 \mathrm{lbs} .-\mathrm{in} .^{2} \\ & 0.069 \mathrm{lbs} . \mathrm{in} .^{2} \end{aligned}$	$0.570 \mathrm{lbs} .-\mathrm{in} .^{2}$ $0.73 \mathrm{lbs} .-\mathrm{in} .^{2}$ (0.75 bore) $0.68 \mathrm{lbs} .-\mathrm{in} .^{2}(1.00 \mathrm{bore})$	$4.990 \mathrm{lbs} .-\mathrm{in}{ }^{2}$ $11.91 \mathrm{lbs} .-$ in. ${ }^{2}$ (1.25 bore) 11.60 lbs. in. ${ }^{2}$ (1.50 bore)
Weight		0.132 lbs .	0.22 lbs .	0.62 lbs .	2.60 lbs .	8.25 lbs .
Maximum radial bearing load at max. speed		6.75 lbs .	13.50 lbs .	31.50 lbs .	63.0 lbs .	300.0 lbs .
Maximum operating speed		1,800 RPM	1,200 RPM	750 RPM	500 RPM	300 RPM

Operation Capabilities

Overrunning Model 0

The overrunning clutch (Model 0) transmits torque up to the rated value in the positive direction; when disengaged it only transmits some
 drag torque in the reverse direction. Major applications for this unit are anti-overrun protection and anti-backup devices.

Start-Stop (random positioning) Model SS
 The start-stop clutch (Model SS) accelerates the load just after the control collar has been released, thus the collar

 is free to rotate, allowing the spring to grip both hubs together. To disconnect the clutch, the collar must be restrained, stopping the collar from rotating via the stop face. The spring will then be opened and the clutch will be disengaged. The output is free to rotate and will be stopped by system friction and clutch drag torque.
Single Revolution Model S

The single revolution clutch (Model S) accelerates in the same manner as the model SS. The deceleration starts when
 the collar is restrained, and the spring is opened, disengaging the clutch.
For Model S, the brake torque capability is limited to 10% of the rated torque.
All PSI Series clutches are easy to install.
The shaft can be pinned or, on larger units, delivered with keyways.

PSI-2, PSI-4 \& PSI-5 Clutches

Dimensions \& Specifications

DIMENSIONS (mm)												
Model	Torque lbs.-in.	B	C	D	E	F	G	H	$\begin{aligned} & \mathrm{J} \\ & \mathrm{Dia} \end{aligned}$	K Dia.	N	\mathbf{P} Rad.
PSI-2	25	$\begin{aligned} & 0.94 \\ & (23.90) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.75) \end{aligned}$	$\begin{aligned} & 0.16 \\ & (4.10) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (8.60) \end{aligned}$	$\begin{aligned} & 0.49 \\ & (12.4) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (8.40) \end{aligned}$	$\begin{aligned} & 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 0.8765-0.8775 \\ & (22.263-22.289) \end{aligned}$	$\begin{aligned} & 0.94 \\ & (23.9) \end{aligned}$	$\begin{aligned} & 1.00 \\ & (25.4) \end{aligned}$	$\begin{aligned} & 0.57 \\ & (14.76) \end{aligned}$
PSI-4	120	$\begin{aligned} & 1.25 \\ & (31.75) \end{aligned}$	$\begin{aligned} & 1.38 \\ & (35.05) \end{aligned}$	$\begin{aligned} & 0.16 \\ & (4.05) \end{aligned}$	$\begin{aligned} & 0.28 \\ & (7.10) \end{aligned}$	$\begin{aligned} & 0.68 \\ & (17.27) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (8.64) \end{aligned}$	$\begin{aligned} & 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 1.1265-1.1275 \\ & (28.639-28.613) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.75) \end{aligned}$	$\begin{aligned} & 1.31 \\ & (33.27) \end{aligned}$	$\begin{aligned} & 0.72 \\ & (18.29) \end{aligned}$
PSI-5	250	$\begin{aligned} & 1.56 \\ & (39.60) \end{aligned}$	$\begin{aligned} & 1.88 \\ & (47.75) \end{aligned}$	$\begin{aligned} & 0.22 \\ & (5.56) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (9.70) \end{aligned}$	$\begin{aligned} & 1.00 \\ & (25.4) \end{aligned}$	$\begin{aligned} & 0.34 \\ & \text { (8.64) } \end{aligned}$	$\begin{aligned} & 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 1.502-1.503 \\ & (38.15-38.18) \end{aligned}$	$\begin{aligned} & 1.56 \\ & (39.60) \end{aligned}$	$\begin{aligned} & 1.69 \\ & (42.93) \end{aligned}$	$\begin{aligned} & 0.96 \\ & (24.38) \end{aligned}$

BORE DATA		
Model	Bore A	M
PSI-2	$\begin{aligned} & 0.2515-0.2525 \\ & (6.36-6.39) \end{aligned}$	\#8-32
PSI-4	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{aligned} & 0.125 \text { Dia. } \\ & \text { (3.175 Dia.) } \end{aligned}$
PSI-5	$\begin{aligned} & 0.501-0.503 \\ & (12.725-12.776) \end{aligned}$	$\begin{aligned} & 0.188 \text { Dia. } \\ & \text { (4.775 Dia.) } \end{aligned}$
METRIC BORES		
PSI-2	$\begin{aligned} & 0.2362-0.2374 \\ & (6.0 \mathrm{Hg}) \end{aligned}$	$\mathrm{M} 3 \times 0.5,5.0$ Lg. Set Screw (2@120) ${ }^{\circ}$
PSI-4	$\begin{aligned} & 0.3937-0.3951 \\ & (10.0 \mathrm{Hg}) \end{aligned}$	$\text { M4 x 0.7, } 5.0$ Lg. Set Screw (2@120) ${ }^{\circ}$
PSI-5	$\begin{aligned} & 0.4724-0.4741 \\ & (12.0 \mathrm{Hg}) \end{aligned}$	0.197 Dia. (5.0 Dia.)

*For assembly and disassembly see page 86.

PSI-2, PSI-4 \& PSI-5 Clutches

Component Parts

COMPONENT PARTS					
Item	Description	Rotation	PSI-2 Part No.	PSI-4 Part No.	$\begin{array}{\|l\|} \hline \text { PSI-5 } \\ \text { Part No. } \end{array}$
1	Retaining Ring		748-1-0005	748-1-0087	748-1-0090
2	Free Hub		540-2-0047	540-4-0027	540-5-0113
3	Control Collar	CW	266-2-9046	266-4-9005	266-5-9010
		CCW	266-2-9046	266-4-9005	266-5-9010
		Model 0	287-2-0003	287-4-0001	287-5-0015
4	Drive Spring	Model S CW	808-2-0036	808-4-0024	808-5-0030
		Model S CCW	808-2-0037	808-4-0030	808-5-0034
		Model SS CW	808-2-0051	808-4-0026	808-5-0031
		Model SS CCW	808-2-0052	808-4-0033	808-5-0035
		Model 0 CW	808-2-0040	808-4-0042	808-5-0033
		Model 0 CCW	808-2-0041	808-4-0043	808-5-0037
5	Shaft Assembly		824-2-0048	824-4-0037	824-5-0110
6	Headless Skt. Set Screw		797-1-0152	0.125 dia. hole	0.188 dia. hole

PSI-6 \& PSI-8 Clutches

Dimensions \& Specifications
PSI-6

Dimensions (mm)
For assembly and disassembly see page 86 .

DIMENSIONS (mm)											
Model	Torque lbs.-in.	B Dia.	C	D	E	F	G	H	$\begin{array}{\|l\|} \hline \mathrm{J} \\ \text { Dia } \end{array}$	R Dia.	S Rad.
PSI-6	500	$\begin{aligned} & 02.437 \\ & \emptyset(61.90) \end{aligned}$	$\begin{aligned} & 2.312 \\ & (58.72) \end{aligned}$	$\begin{aligned} & 0.28 \\ & (7.10) \end{aligned}$	$\begin{aligned} & 0.27 \\ & (6.86) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.1) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (16.00) \end{aligned}$	$\begin{aligned} & 0.12 \\ & (3.05) \end{aligned}$	$\begin{aligned} & 1.559-1.562 \\ & (39.60-39.67) \end{aligned}$	$\begin{aligned} & 2.75 \\ & (69.85) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$
PSI-8	2500	$\begin{aligned} & \varnothing 4.00 \\ & \varnothing(101.6) \end{aligned}$	$\begin{aligned} & 4.25 \\ & (107.95) \end{aligned}$	$\begin{aligned} & 0.62 \\ & (15.75) \end{aligned}$	$\begin{aligned} & 0.35 \\ & (8.89) \end{aligned}$	$\begin{aligned} & 2.20 \\ & (55.9) \end{aligned}$	$\begin{aligned} & 1.27 \\ & (32.26) \end{aligned}$	$\begin{aligned} & 0.188 \\ & (4.78) \end{aligned}$	$\begin{aligned} & 2.372-2.374 \\ & (60.25-60.30) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (50.8) \end{aligned}$

BORE \& KEYWAY DATA					
Model	Bore A	Keyway Width B	Keyway Height C	M	0
PSI-6	$\begin{gathered} 0.7505-0.7525 \\ (19.063-19.114) \end{gathered}$	$\begin{aligned} & 0.1885-0.1905 \\ & (4.787-4.839) \end{aligned}$	$\begin{gathered} 0.837-0.842 \\ (21.25-21.52 \end{gathered}$	\#1/4-20 Tap	\#1/4-20 x 1/2 DP 3 on 2.062 BC Max. Thread Engage Free Hub 0.312
PSI-6	$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	-	-	$\begin{gathered} 0.25 \mathrm{Dia} . \\ (6.35) \end{gathered}$	\#1/4-20 x 1/2 DP 3 on 2.062 BC Max. Thread Engage Free Hub 0.312
PSI-8	$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	$\begin{aligned} & 0.251-0.253 \\ & (6.37-6.43) \end{aligned}$	$\begin{gathered} 1.114-1.124 \\ (28.29-28.55) \end{gathered}$	$\begin{gathered} \text { 3/8-16 Tap } \\ 2 @ 90^{\circ} \end{gathered}$	5/16-18 6 on 3.375 BC Max. Thread Engage Free Hub 0.375
PSI-8	$\begin{gathered} 1.2505-1.2525 \\ (31.762-31.814) \end{gathered}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.389-1.399 \\ (35.28-35.54) \end{gathered}$	$\begin{gathered} 3 / 8-16 \\ 2 @ 90^{\circ} \end{gathered}$	5/16-18 6 on 3.375 BC Max. Thread Engage Free Hub 0.375
PSI-8	$\begin{gathered} 1.3755-1.3775 \\ (34.937-34.989) \end{gathered}$	$\begin{aligned} & 0.3135-0.3155 \\ & (7.962-8.014) \end{aligned}$	$\begin{gathered} 1.518-1.528 \\ (38.55-38.82) \end{gathered}$	$\begin{gathered} 3 / 8-16 \\ 2 @ 90^{\circ} \end{gathered}$	5/16-18 6 on 3.375 BC Max. Thread Engage Free Hub 0.375
PSI-8	$\begin{gathered} 1.5005-1.5025 \\ (38.112-38.164) \end{gathered}$	$\begin{aligned} & 0.376-0.378 \\ & (9.55-9.61) \end{aligned}$	$\begin{gathered} 1.605-1.615 \\ (40.76-41.02) \end{gathered}$	$\begin{gathered} 3 / 8-16 \\ 2 @ 90^{\circ} \end{gathered}$	5/16-18 6 on 3.375 BC Max. Thread Engage Free Hub 0.375
METRIC BORES					
PSI-6	$\begin{gathered} 0.7874-0.7894 \\ (20.0 \mathrm{H} 9) \end{gathered}$	$\begin{aligned} & 0.2356-0.2368 \\ & (5.985-6.015) \end{aligned}$	$\begin{aligned} & 0.8976-0.9015 \\ & (22.80-22.90) \end{aligned}$	M5 x 0.8 Tap	$\begin{gathered} \text { M6 x 1.0 THD } \\ 3 \text { Holes on a } 52.37 \text { BC } \end{gathered}$
PSI-6	$\begin{gathered} 0.9842-0.9862 \\ (25.0 \mathrm{Hg}) \end{gathered}$	-	-	$\begin{gathered} \text { 5.0 Dia. } \\ \text { (1.97 Dia.) } \end{gathered}$	$\begin{gathered} \text { M6 x } 1.0 \text { THD } \\ 3 \text { Holes on a } 52.37 \text { BC } \end{gathered}$
PSI-8	$\begin{gathered} 1.378-1.3804 \\ (35.0 \mathrm{Hg}) \end{gathered}$	$\begin{aligned} & 0.3930-0.3944 \\ & (9.982-10.018) \end{aligned}$	$\begin{gathered} 1.508-1.516 \\ (38.30-38.50) \end{gathered}$	$\begin{gathered} \text { M10 x 1.5, } 25.0 \\ \text { Lg. Set Screw } 2 @ 120^{\circ} \end{gathered}$	$\begin{gathered} \text { M8 x } 1.25 \text { THD } \\ 6 \text { Holes on a 85.73 BC } \end{gathered}$
PSI-8	$\begin{gathered} 1.5748-1.5772 \\ (40.0 \mathrm{Hg}) \end{gathered}$	-	-	$\begin{gathered} \text { M10 x 1.5, } 25.0 \\ \text { Lg. Set Screw } 2 @ 120^{\circ} \end{gathered}$	M8 x 1.25 THD 6 Holes on a 85.73 BC

PSI-6 \& PSI-8 Clutches

Component Parts

COMPONENT PARTS				
Item	Description	Rotation	PSI-6 Part No.	PSI-8 Part No.
1	Retaining Ring		748-1-0038	748-1-0039
2	Free Hub		540-6-0009	540-8-0014
3	Control Collar	CW	266-6-0301	266-8-0127
		CCW	266-6-0401	266-8-0127
		Model 0	287-6-0001	287-8-0002
4	Drive Spring	Model S CW	808-6-0001	808-8-0011
		Model S CCW	808-6-0002	808-8-0012
		Model SS CW	808-6-0007	808-8-0013
		Model SS CCW	808-6-0008	808-8-0014
		Model 0 CW	808-6-0009	808-8-0015
		Model 0 CCW	808-6-0010	808-8-0016
5	Shaft Assembly		0.75" 824-6-0052	1.000" 824-8-0213
			1.00" 824-6-0056	1.250" 824-8-0212
				1.375" 824-8-0211
				1.500" 824-8-0210
6	Headless Skt. Set Screw		797-1-0174	797-1-0199 (2)

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018 AUTORIZADO \quad QRO (442) 1957260 ventas@industrialmagza.com

Dust Cover Clutch Enclosures

Provide protection from contaminants for Super CB, CB and SAC Series Models

Plastic Clutch Cover

We offer plastic enclosures designed to complement the following clutches: Super CB-6, -8, -10; CB-2, $-4,-5,-6,-8,-10$ and SAC-2, $-4,-5,-6$.

Plastic Cover

- Protect units from dirt, contaminants and moisture
- Help to assure longer life
- Flexible soft plastic construction is durable
- Simple to remove and reinstall
- Low cost

Plastic

Model	Part No.
Super CB-6	$287-6-0007$
Super CB-8	$287-8-0003$
Super CB-10	$287-0-0002$
CB-2	$287-2-0007$
CB-4	$287-4-0002$
CB-5	$287-5-0007$
CB-6	$287-6-0007$
CB-8	$287-8-0003$
CB-10	$287-0-0002$
SAC-2	$287-2-0007$
SAC-4	$287-4-0002$
SAC-5	$287-5-0007$
SAC-6	$287-6-0007$

Aluminum Clutch Cover Kits

The environmentally designed cast aluminum enclosure will protect a CB-6, Super CB-6 or SAC-6 clutch from indoor and outdoor hazards such as falling dirt, non-corrosive liquids, dust, rain, sleet and snow.

- Sturdy cast aluminum construction
- Offers NEMA 3 \& 12 protection
- Can be installed at any time
- Quieter clutch operation
- USDA-approved black powder coat paint finish

Benefits

- Prevents premature failure of clutches caused by moisture, dust and debris
- Extends clutch life
- Seals and protects bearings
- Reduces clutch operating temperature

Typical Applications

- Food processing
- Packaging
- Material handling
- Medical equipment
- Agriculture

Model	Part No.
Super CB-6	$101-6-0096$
CB-6 (Std.)	$101-6-0095$
SAC-6	$101-6-0095$

Note: A kit contains all components and hardware necessary to enclose a Super CB-6, CB-6 and SAC-6 clutch.

Dimensions (Aluminum)

Stop Collars

Specifications and Adjustments

Stop Collars

Stop Collars				
Model	Collar Type	Stops	Status	
Super CB	Reinforced Plastic with steel insert Reinforced Plastic	1,2 or 4 3,5 through 24 stops	Standard Optional	
Standard CB	Reinforced Plastic	1,2 or 4 up to 24 max*	Standard Optional	
PSI	Reinforced Plastic	1,2 or 4 up to 24 max*	Standard Optional	
SAC	Reinforced Plastic	1,2 or 4 up to 24 max*	Standard Optional	
ACCM	Powder Metal	4	Standard	
ACCE	Powder Metal	4	Standard	

* Consult factory for complete information

Stop Collar Adjustments

Unique splined stop collars are a standard feature of Super and Standard CB, as well as the PSI and SAC model clutches. These stop collars can be adjusted radially in fine increments. This feature allows the user to reposition the output to comply with specified shaft and keyway placements. Standard stop collar positioning increments are shown at right.

Stop Collar Removal and Adjustment

To adjust the stop collar, remove retaining ring A, slide cam B off sleeve C, rotate the cam to the desired position, slide it onto the sleeve again, and replace the retaining ring.

Note: While adjusting the stop collar on split cam units, the coupling sleeve must be held secure so that it does not move.

Split Cam Design

The Split Cam stop collar design is a standard feature on Super CB Sizes 5, 6, 7, 8;
Standard CB Sizes 5, 6, 7, 8 and SAC Sizes 5, 6.

Traditional Cam Design

The Cam stop collar design is a standard feature on Super CB Size 10; Standard CB Sizes 2, 4, 10 and SAC Sizes 2, 4.

Standard Stop Collar Adjustments				
Series	Size	Collar Design	Adjustment	
Super CB	CB-5	Split Cam	1.8°	
Super CB	CB-6	Split Cam	1.8°	
Super CB	CB-7	Split Cam	1.6°	
Super CB	CB-8	Split Cam	1.6°	
Super CB	CB-10	Cam	1.5°	
Standard CB	CB-2	Cam	2.8°	
Standard CB	CB-4	Cam	2.4°	
Standard CB	CB-5	Split Cam	1.8°	
Standard CB	CB-6	Split Cam	1.8°	
Standard CB	CB-7	Split Cam	1.6°	
Standard CB	CB-8	Split Cam	1.6°	
Standard CB	CB-10	Cam	1.5°	
SAC	SAC-2	Cam	2.8°	
SAC	SAC-4	Cam	2.4°	
SAC	SAC-5	Split Cam	1.8°	
SAC	SAC-6	Split Cam	1.8°	

[^7]
Heavy Duty Actuator

For use with PSI-6 and PSI-8 Clutches

The Heavy Duty Actuator is offered as a simple laminated AC solenoid-actuated mechanical device to operate in conjunction with the PSI-6 and PSI-8 clutches. Mounted in the proper proximity to the clutches, it will control single, multiple, or partial revolution. It is designed as a no power, no revolution device. Ruggedly constructed from steel and nylon for maximum strength and long life.

Operation

When voltage is applied to the coil, the stop block is pulled back from the clutch stop collar, allowing the clutch to engage. It is not necessary to hold power on the coil for the entire revolution. A pulse to the coil will allow the clutch to start, the return spring pressure on the collar will not disengage the clutch and the stop block will be in position to disengage the clutch after one revolution. No "On" timing is necessary.

SPECIFICATIONS	
Input	Line power $120 \mathrm{AC}, 60 \mathrm{~Hz}$
DC Resistance	14.5 ohms

2.9 amps\end{array}\right|\)\begin{tabular}{ll}
0.1 amps

\hline Load current \& | $1 / 4$ " spade lug |
| :--- |
| connections |

\hline Holding current \&

\hline Terminals \&

\hline
\end{tabular}

PN 901-00-002

Pneumatic Actuation

Pneumatic actuation is available on the Standard CB-4, $-5,-6,-7,-8$ and -10 as well as the respective Super CB models; SAC-$4,-5,-6,-8$.

- No electrical sparks
- Not subject to power line voltage fluctuations
- Longer life of control members

Air pressure required: 4,5-16,5 bar Retrofit kits available.

Notes

\qquad

DL Series

DuraLIFE ${ }^{\text {TM }}$ Clutches

DuraLIFE Series clutches (DL) are electromechanical wrap spring clutches that combine high torque, reliability and rapid acceleration into one small package at a competitive cost. It is offered in two configurations: headed coil or flying leads.

Wrap spring technology provides very fast response to bring loads up to speed in less than 3 ms (after spring wrap-down and depending on rpm).
The DL-33 is a drop-in alternative for highcost clutches used in office automation applications such as printers and copiers. The long life and reliable performance make the DL-33 an ideal clutch for many packaging and automotive applications.

Features

- Wrap spring technology
- High torque, small package
- Rapid acceleration
- Consistent performance
- Low wattage required
- RoHS compliant

Applications

The DL-33 is suitable for high-load, tight-fitting applications requiring quick response, rapid acceleration and high torque. These requirements are common in office automation, packaging and automotive markets.

Application Considerations

Single Direction
Wrap spring clutches provide torque only in the direction in which they wrap down. This allows for overrunning.

Relative High Shock
Due to the rapid acceleration of the DL-33, system inertia effects can be significant. In some applications, an inline slip device may be used for shock absorption.
Engagement Relative to Speed The DL-33 relies on relative motion between the input and output for engagement. Thus the slower the speed, the longer the time until engagement.

Typical Applications

Office Automation

- Copiers \& printers
- Paper feed systems
- Collators \& sorters
- Mailing equipment
- Ticket \& receipt dispensers

Packaging

- Labeller
- Dispensing machines
- Conveyors

Automotive

- Cruise control
- Power lift gate
- Trunk cinch actuator systems
- Trunk power door closer

How to Order
 mine the direction of rotation

3-Dog Drive Adapter
 Flexible Coupling

OPTIONS

DL-33 Clutches

Dimensions \& Specifications

PERFORMANCE	
Static torque	$30 \mathrm{lbs} .-\mathrm{in} .(3.4 \mathrm{Nm})$
Inertia, rotating parts	$0.016 \mathrm{lbs} .-\mathrm{in} .^{2}$
Maximum operating speed	$1,200 \mathrm{RPM}$
Temperature	$32^{\circ}-140^{\circ} \mathrm{F}\left(0-60^{\circ} \mathrm{C}\right)$
Cycle Life	$1 \times 10^{6} @ 30 \mathrm{lbs} .-\mathrm{in}$. Total Load
Weight	0.22 lbs.

ELECTRICAL DATA			
Voltage*	Current (amps)	Resistance (ohms $\pm 10 \%$)	Status
24 DC	0.130	185.0	Standard
12 DC	0.267	45.0	Standard
90 DC	0.034	2670.0	Standard
*Custom voltages available (Coils are rated for continuous duty; 3.5 watts nominal) Molded connector or 12" flying leads			

BORE DATA	
Bore Sizes	Bore B 0
1/4 inch	$\begin{aligned} & 0.2505-0.2530 \\ & (6.362-6.427) \end{aligned}$
5/16 inch	$\begin{aligned} & 0.3130-0.3181 \\ & (7.950-8.090) \end{aligned}$
METRIC BORES	
6 mm	$\begin{aligned} & 0.237-0.239 \\ & (6.01-6.09) \end{aligned}$
8 mm	$\begin{aligned} & 0.315-0.318 \\ & (8.01-8.09) \end{aligned}$

Cross Pin or Standard "D" Bores available, consult factory.

MAC Series

High-Performance Clutches at a Low Cost

Years of experience in developing magnetically actuated clutches for paper transport drives are all wrapped up in the MAC $30 \& 45$. These units meet the highest industry performance standards at an outstanding price, using state-of-the-art engineering, materials and processes.

- Wrap spring technology allows for fast response to bring loads up to speed within 50 ms (less depending on RPM)
- Exceeds industry life requirements with little cycle-to-cycle variation
- Enclosed construction effectively eliminates contaminants
- Electrical actuation for simple control interface
- Drag- and friction-free operation results in less wear
- Unidirectional input
- Output freewheels when disengaged
- RoHS compliant

Design Advantages

- Optional connector head plugs directly into wire harnesses
- Eliminate the need to custom fit lead lengths with connector head
- No leads to get tangled or damaged with connector head
- Rapid engagement time
- High torque-to-size ratio
- Simple construction - only three main assemblies
- High performance at low cost

Typical Applications

- Paper transport drives
- Forms handling equipment
- Sheet feeders
- Conveyors
- Film processing machines
- Copiers
- Printers
- Collators

PERFORMANCE		
	MAC-30	MAC-45
Static torque	$25 \mathrm{lbs} .-\mathrm{in} .(2.83 \mathrm{Nm})$	150 lbs .-in. (16 Nm)
Maximum radial bearing load	15 lbs .	30 lbs .
Maximum operating speed	1,200 RPM	1,000 RPM
Response time, voltage on at full speed	50 MS Max. 20 MS Nom.	150 MS Max. 40 MS Nom.
Input configuration	Hub input or shaft input	
Bearing	Reinforced polyetherimide with internal lubricant	
Weight	0.22 lbs .	1.00 lbs .

For more information see page 77.

MAC-30 Clutch

Dimensions \& Specifications

Dimensions (mm)
For more information see page 77.

BORE DATA	
Bore B	Status
$0.2505-0.02530$	Standard
$(6.362-6.427)$	
$0.3130-0.3155$	
$(7.950-8.014)$	Optional
METRIC BORES	
$0.2366-0.2394$	Standard
$(6.009-6.081)$	
$0.3153-0.3190$	Standard
$(8.008-8.103)$	

OPTIONS

Lug Drive Adapter
Connector Head
Consult Factory

ELECTRICAL DATA				
Voltage MAC-30				

Leads: 12.0 inches (300 mm) long standard
Ends stripped: . $19 / .31$ inches ($4.9 / 7.8 \mathrm{~mm}$) (Optional: terminated with a connector of your choice)

MAC-30 with Connector Head				
Voltage	Current (amps)	Resistance (ohms)	Status	
24 DC	0.110	227	Standard	
12 DC	0.243	49	Modification	
90 DC			Available	

Termination: $2 \times .023-.027 \times .24$ ($0.58-0.69 \times(6.09)$ square pin, pre-tinned alloy (Molex \#08-52-0601)
Leadsets: Teflon insulated lead wires per UL1213 are available to suit any wire harness

MAC-45 Clutch

Dimensions \& Specifications

Example of your mating assembly

Dimensions (mm)
For more information see page 77.

BORE DATA	
Bore B	Status
$0.3755-0.3780$	Optional
$(9.537-9.602)$	
$0.5010-0.5035$	
$(12.725-12.789)$	Optional
$0.6260-0.6295$	
$(15.900-15.990)$	Standard
$0.3941-0.3968$	
$(10.010-10.079)$	Optional
$0.4729-0.4755$	
$(12.011-12.078)$	Optional
$0.5516-0.5555$	
$(14.010-14.110)$	Optional
$0.6304-0.6346$	
$(16.012-16.119)$	Optional

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms $+/-10 \%)$	Status
24 DC	0.257	93	Standard
12 DC	0.526	23	Modification
90 DC	0.054	1680	Modification
Leads:	$12.0 \mathrm{in} .(300 \mathrm{~mm})$ long standard		
Ends stripped:	$0.19 / 0.31$ in. $(4.9 / 7.8 \mathrm{~mm})$ (Optional: terminated with a connector of your choice)		

PERFORMANGE

Bolt Circle Attachment
Ball Bearing Design
Lug Drive Adapter
Integral Connector Block (future option)
Consult factory

MAC-45 Clutch with Bolt Circle Attachment

Dimensions \& Specifications

Dimensions (mm)
For more information see page 77.

BORE DATA	
Bore B	Status
$0.3755-0.3780$ $(9.537-9.602)$	Optional
$0.5010-0.5035$ $(12.725-12.789)$	Optional
$0.6260-0.6295$ $(15.900-15.990)$	Standard
METRIC B0RES	
$0.3941-0.3968$ $(10.010-10.079)$	Optional
$0.4729-0.4755$ $(12.011-12.078)$	Optional
$0.5516-0.5555$ $(14.010-14.110)$	Optional
$0.6304-0.6346$ $(16.012-16.119)$	Optional

ELECTRICAL DATA			
Voltage	Current (amps)	Resistance (ohms ${ }^{+/-10 \%)}$	Status
24 DC	0.257	93	Standard
12 DC	0.526	23	Modification
90 DC	0.054	1680	Modification
Leads:	12.0 in . (300 mm) long standard		
Ends stripped:	$0.19 / 0.31 \mathrm{in}$. (4.9/7.8 mm) (Optional: terminated with a connector of your choice)		

PERFORMANGE

Ball Bearing Design
Lug Drive Adapter
Integral Connector Block (future option)
Consult factory

SP-2, 4, 5 Clutches

Dimensions \& Specifications

Designed specifically for computer peripheral and business machine applications, these clutches and brakes are suitable for indexing, rapid cycling and positive displacement clutching drives.

- Low cost
- Trouble-free design for long life
- Complete package for immediate installation
- High torque
- Standard hub input; shaft input special
- RoHS compliant

Options

- Anti-overrun
- Anti-back (HI only)
- Overtravel stop

Typical Applications

- Paper drives
- Card readers and sorters
- Copying machines
- Ribbon drives
- Material handling conveyors

SP-4: 4 holes,
. 187 dia. on 2.125 B.C.
SP-5: 4 holes,
.187 dia. on 3.125 B.C.

Dimensions (mm)

DIMENSIONS (mm)												
Model	A	B	c	D	E	F	G	H	1	J	K	L
SP-2	1.670	0.250	0.125	0.080	$\begin{aligned} & 1.188 \\ & 1.187 \end{aligned}$	1.620	0.090	$\begin{aligned} & 0.2515 \\ & 0.2505 \end{aligned}$	1.620	0.810	0.690	3.00
SP-4	2.000	0.430	0.160	0.080	$\begin{aligned} & 1.250 \\ & 1.249 \end{aligned}$	1.910	0.090	$\begin{aligned} & 0.376 \\ & 0.378 \end{aligned}$	2.380	1.190	1.00	4.10
SP-5	2.375	0.340	0.150	0.090	$\begin{aligned} & 1.5625 \\ & 1.5615 \end{aligned}$	2.180	0.090	$\begin{aligned} & 0.5015 \\ & 0.5005 \end{aligned}$	2.620	1.310	1.310	4.56

PERFORMANCE					
	SP-2	SP-4	SP-5		
	Ibs.-in. (Nm)	25 (2.825)	120 (13.56)	250 (28.25)	
Maximum anti-overrun	Ibs.-in. (Nm)	10 (1.13)	25 holding capability	(2.825)	

Note: By adding an optional over travel stop (OTS), the braking torque is increased from 10\% to 20% of the rated clutch torque.

ELECTRICAL DATA					
Voltage	Current (amps)	Current (amps)	Resistance (olims)	Resistance (ohms)	
	SP-2	SP-4, SP-5	SP-2	SP-4, SP-5	
115 AC 60 Hz	0.104	0.103	825	280	
24 DC	0.230	0.325	104	74.0	
12 DC*	0.460	0.732	26	16.4	
90 DC* *	0.059	0.096	1510	936	

*Modifications

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018 AUTORIZADO QRO (442) 1957260 ventas@industrialmagza.co

Brakes \& Clutches

SP-6 Clutch

Dimensions \& Specifications

Designed specifically for computer peripheral and business machine applications, these clutches and brakes are suitable for indexing, rapid cycling and positive displacement clutching drives.

- Low cost
- Trouble-free design for long life
- Complete package for immediate installation
- High torque
- Standard hub input; Shaft input special
- RoHS compliant

Options

- Anti-overrun
- Anti-back (HI only)
- Overtravel stop

Typical Applications

- Paper drives
- Card readers and sorters
- Copying machines
- Ribbon drives
- Material handling conveyors

Dimensions (mm)

BORE \& KEYWAY DATA				
Bore A	Keyway Width B	Keyway Depth C	Set Screws D	Mounting Holes E
$\begin{gathered} 0.7505-0.7525 \\ (19.062-19.114) \end{gathered}$	$\begin{aligned} & 0.1885-0.1905 \\ & (4.787-4.839) \end{aligned}$	$\begin{gathered} 0.837-0.842 \\ (21.25-21.39) \end{gathered}$	\#10-32 UNC-2B x0.19 Lg. Hex Skt. Set Screw	$3 \mathrm{x} \# 1 / 4-20$ UNC-2B 0.48 MIN DP 2.062 BC
$\begin{gathered} 1.0005-1.0025 \\ (25.412-25.464) \end{gathered}$	-	-	$\begin{aligned} & \text { 0.187-0.192 Hole } \\ & (4.74-4.88) \end{aligned}$	$3 x \# 1 / 4-20$ UNC-2B 0.48 MIN DP 2.062 BC
METRIC BORES				
$\begin{gathered} 0.7874-0.7894 \\ (20.0 \mathrm{H9} 9) \end{gathered}$	$\begin{aligned} & 0.2356-0.2368 \\ & (5.985-6.015) \end{aligned}$	$\begin{gathered} 0.8976-0.9015 \\ (22.800-22.900) \end{gathered}$	$\text { M5 x } 0.8 \times 5.0$ Lg. Hex Skt. Set Screw	$3 x$ M6 x 1.0 holes on 52.38 BC
$\begin{aligned} & 0.9842-0.9862 \\ & (25.0 \mathrm{H} 9) \end{aligned}$	-	-	4.87-5.14 Hole (0.191-0.203)	$3 x$ M6 x 1.0 holes on 52.38 BC

PERFORMANCE	
Static torque	$500 \mathrm{lbs} .-\mathrm{in} .(56.5 \mathrm{Nm})$
Maximum anti-overrun holding capability	300 lbs. -in. $(33.9 \mathrm{Nm})$
Inertia, rotating parts	$2.0 \mathrm{lbs} .-\mathrm{in}^{2}{ }^{2}$
Maximum radial bearing load at maximum speed	63 lbs.
Maximum operating speed	500 RPM
Response time, voltage on at full speed	60 MS
Optional - Anti-overrun operation	Hub input or Shaft input
Weight	5.29 lbs.

ELECTRICAL DATA		
Voltage	Current (amps)	Resistance (ohms)
115 AC 60 Hz	0.334	57.5
24 DC	0.586	41.0
$12 \mathrm{DC}^{*}$	1.150	10.4
$90 \mathrm{DC}^{*}$	0.151	598

*Modifications

Note: By adding an optional over travel stop (OTS), the braking torque is increased from 10% to 20% of the rated clutch torque

BDNB Series

Bi-Directional, No-Back Design Clutches

The Bi-Directional No-Back offers an extraordinary combination of functions at low cost. The basic function of this unit may be easily adapted to a large range of applications requiring automatic position holding with rotary driven capability.
The BDNB can be turned only when torque is applied to the input shaft. The input shaft may be driven in either direction with torque being transmitted directly to the output shaft.

When there is no torque on the input, the output shaft is "locked" and cannot be rotated in either direction. Any torque applied to the output shaft is transmitted directly to the clutch body, and will not be reflected to the input.

- Input operates in CW and CCW direction; output will hold loads within specified torque ranges
- Modifications and special design variations available
- Maximum operating speed 200 RPM
- Flange can be oriented on the bi-side or the brake side, depending on the application
- RoHS compliant

Typical Applications

- Tank turret drives
- Boat or aircraft trim tabs
- Robotics
- Rudderlocks
- Hoists
- Manlifts
- Actuator holdbacks

Dimensions (mm)

Bi-Directional No Back offers two Flange options:

- Mounted on bi-side (shown above)
- Mounted on brake side (shown at left)

PERFORMANCE	
Torque ratings	$250 \mathrm{lbs} .-\mathrm{in} .(28.23)$
Clutch holding torque, both directions	250 lbs. -in. (28.23)
Output to housing lost motion	$6^{\circ} \mathrm{t}$
Input to output lost motion	25°
Maximum additional input torque	10^{*}
Weight	2 lbs.

[^8]
Notes

\qquad

Selection Considerations

Inertia and Torque Values

Application Analysis

1. Function

The process for establishing the clutch or brake function is illustrated in Step 1 on page 16. In review, the three functions and the appropriate series selections are noted below.

Overrunning

Unidirectional torque transmission with free wheeling in opposite direction

Selection

PSI (Model 0)

Start-Stop

Engage/disengage with random stop position.

Selection

SAC (Model SS)
PSI (Model SS)

Single Revolution

Accurate stop position in single or fraction revolution cycles.

Selection
 CB Model S
 SAC Model S
 PSI Model S

2. Calculate Ioad inertia (WR2)

Use the inertia chart on page 75 to determine the inertia of the application components. To determine WR2 of a given shaft or disc, multiply the WR2 from the chart by the length of shaft or thickness of disc in inches.
Note: For hollow shafts, subtract WR2 of the I.D. from the WR2 of the O.D. and multiply by length.

In order to calculate the inertias of components which are made of material other than steel, use the multipliers found in the conversion chart (right) to establish the inertias of these components.

Inertia Conversion Chart

In order to determine the inertia of a rotating member (shaft, disc, etc.) of a material other than steel, multiply the inertia of the appropriate steel diameter from the chart on page 75 by:

Material	Multiplier
Bronze	1.05
Steel	1.00
Iron	.92
Powdered Metal Bronze	.79
Powdered Metal Iron	.88
Aluminum	.35
Nylon	.17

3. Determine clutch or

 brake torque valueWith the inertia value calculated in Step
2 , determine the torque requirement for the function determined in Step 1.
A) For Overrunning and Start-Stop (random start-stop) (SAC and PSI Models SS and 0) $T=\frac{W R^{2} \times R P M}{3700 \times t}+$ friction torque*

Where-
$\mathrm{T}=$ Torque required from wrap spring WR ${ }^{2}$ = load inertia (Step 2)
RPM = shaft speed at clutch location $\mathrm{t}=$ time to engagement (. 003 for clutch)
B) For single revolution applications (CB, SAC and PSI Models S) $T=\frac{W R^{2} \times R P M}{3700 \times t}-$ friction torque*

Where-
$\mathrm{T}=$ torque required from wrap spring $W^{2}=$ Load inertia (Step 2)
RPM = Shaft speed at clutch or brake location
$\mathrm{t}=$ time to disengagement
(. 0015 for brake)

Find the value of T on the Torque vs. Model Comparison Chart below.
*Frictional (drag) torque is the torque necessary to overcome static friction. It may be measured by a spring-scale or by dead-weights, applied to a known moment arm so gradually as to make inertia negligible. It is that torque found just sufficient to induce motion

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018 AUTORIZADO QRO (442) 1957260 ventas@industrialmagza.com

Selection Considerations

Inertia and Torque Values

4. Verify selection with unit inertia

From the individual product specifications, find the unit inertia of the model selected in Step 3. Add this to the load inertia previously determined to arrive at the total torque requirement.
A) For Overrunning and $0 n-0 f f$ (PSI Models SS and 0)
A) $T_{t}=\frac{\left(W R^{2}{ }_{\text {LOAD }}+W R^{2}{ }_{U N I T}\right) R P M}{3700 \times t}+$ friction torque
B) For Single Revolution Start-Stop (CB, SAC-S and PSI Models S)
A) $T_{t}=\frac{\left(W R^{2}{ }_{\text {LOAD }}+W R^{2}{ }_{\text {UNIT }}\right) R \text { RPM }}{3700 \mathrm{xt}}$ - friction torque

Where $-T_{t}=$ total system torque

$$
\begin{aligned}
& \left(\text { WR }^{2} \text { LOAD }\right)=\text { load inertia } \\
& \left(W R^{2} \text { UNIT }\right)=\text { clutch inertia }
\end{aligned}
$$

Find this torque value on the Torque vs. Model Comparison Chart on page 74 to verify the model selected in Step 3.

Minimum Load Inertia-
Super CB and CB Clutch/Brakes
In order to achieve the CB accuracy capability of $\pm 1 / 2^{\circ}$, a minimum load inertia is required to fully engage the brake spring and disengage the clutch spring. This minimum inertia (I) can be calculated from the accompanying formula and chart:
$I=(t) \frac{\left(T_{c}+T_{0}\right)(3700)}{R P M}-I_{c}$
I = Minimum inertia required to fully activate the clutch/brake-lb-in ${ }^{2}$
$\mathrm{t}=$ Time-Seconds
$T_{C}=$ Torque required to fully activate the clutch/brake-lb-in
$\mathrm{T}_{0}=$ Drag torque-lb-in
RPM = Revolutions per minute
$I_{C}=$ Inertia at the output side of the clutch-lb-in ${ }^{2}$

EXAMPLE:

CB-6 in a system running at 200 RPM with $3 / 4$ " bore and $20 \mathrm{lb}-\mathrm{in}$ drag. What inertia is required to fully activate the clutch/ brake?

$$
\mathrm{I}=\frac{(0.005)(8.75+20)(3700)}{(200)}-1.221=1.438{\mathrm{lb}-\mathrm{in}^{2}}^{2}
$$

NOTE: When calculated inertia is zero or negative, no further action is required. If the calculation result is positive, additional inertia equal to or exceeding the result should be added.

INERTIA OF STEEL SHAFTING (Per Inch of Length or Thickness)					
Dia. (in.)	WR ${ }^{2}$ (lbs.-in. ${ }^{\text {2 }}$	Dia. (in.)	WR ${ }^{2}$ (lbs.-in. ${ }^{\text {2 }}$	Dia. (in.)	W/R2 (lbs.-in. ${ }^{2}$)
1/4	. 00011	7	66.816	13	803.52
3/8	. 00055	$71 / 4$	77.04	$131 / 4$	858.24
1/2	. 00173	$71 / 2$	87.984	$131 / 2$	924.48
3/4	. 00864	$73 / 4$	100.656	$133 / 4$	995.04
1	. 0288	8	113.904	14	1068.48
$11 / 4$. 072	$81 / 4$	128.88	$141 / 4$	1147.68
$11 / 2$. 144	$81 / 2$	144	$141 / 2$	1229.75
$13 / 4$. 288	$83 / 4$	162.72	$143 / 4$	1317.6
2	. 432	9	182.88	15	1404
$21 / 4$. 72	$91 / 4$	203.04	16	1815.84
$21 / 2$	1.152	$91 / 2$	223.2	17	2314.08
$23 / 4$	1.584	$93 / 4$	252	18	2910.24
3	2.304	10	277.92	19	3611.52
$31 / 2$	4.176	$101 / 4$	306.72	20	4433.76
$33 / 4$	5.472	$101 / 2$	338.4	21	5389.92
4	7.056	$103 / 4$	371.52	22	6492.96
$41 / 4$	9.072	11	407.52	23	7757.28
$41 / 2$	11.376	$111 / 4$	444.96	24	9195.84
5	17.28	$111 / 2$	486.72	25	10827.36
$51 / 2$	25.488	$113 / 4$	529.92	26	12666.24
6	36	12	576	27	14731.2
$61 / 4$	42.624	$121 / 4$	626.4	28	17036.64
$61 / 2$	49.68	$121 / 2$	679.68	29	19604.16
$63 / 4$	57.888	$123 / 4$	735.84	30	22452.48

TORQUE \& INERTIA VALUES			
Model	T_{C}	t	I_{C}
CB-2	1.65	0.003	0.0116
CB-4	6.60	0.004	0.0450
CB-5	6.88	0.004	0.1663
CB-6	8.75	0.005	$\begin{aligned} & 1.221 \text { (0.75 in. bore) } \\ & 1.138 \text { (1.0 in. bore) } \end{aligned}$
CB-7	17.0	0.005	9.43 (0.75 in. bore) 7.72 (1.0 in. bore) 6.70 (1.25 in. bore) 6.55 (1.50 in. bore)
CB-8	20.0	0.005	9.32 (1.0 in. bore)
			8.15 (1.5 in. bore)
CB-10	50.0	0.006	30 (1.5 in. bore)

How to determine maximum inertia load of CBs
$\mathrm{T} \times 3700 \mathrm{xt}=\mathrm{WR}^{2}$
RPM

$$
\begin{aligned}
& \mathrm{T}=\text { Clutch Torque } \\
& \mathrm{t}=.0015
\end{aligned}
$$

Selection Considerations

Example

Nip Feed for Ribbon (Tape) Cut-OffIndexes 180° for $51 / 2^{\prime \prime}$ Length

Nip Feed for Ribbon (Tape) Cut-OffIndexes 180° for $51 / 2^{\prime \prime}$ Lengths

1. Determine function: Application requires accurate 180° start and stop positioning, therefore a CB or PSI Model S is chosen.
2. Calculate Load Inertia (WR²)

WR2 NIPS (2) = $4.176 \mathrm{lbs} .-$ in. ${ }^{2}$ each (ref. inertia chart, pg. 85)

$$
\text { x } 2=8.352 \mathrm{lbs} .-\mathrm{in} .^{2}
$$

WR $^{2}{ }_{\text {SHAFT }}=.0288 \times 6=.1728 \mathrm{lbs} .-\mathrm{in} .^{2}$
$W^{2}{ }^{2}$ LOAD $=8.5248 \mathrm{lbs} .-\mathrm{in} .^{2}$
TOTAL
3. Apply results to Step 3 formulas to determine torque required for start/ stop.
$\mathrm{T}=8.5248 \times 200 / 5.55-20=287.2 \mathrm{lbs} .-\mathrm{in}$.
Estimate friction torque (about 20 lbs .-in. for this example).

Make initial unit selection from Torque vs. Model Comparison Chart (pg. 84) based on load torque requirements: i.e., 287.2 in.lbs. Size CB-6
4. After making initial unit selection, add unit inertia (ref. Torque and Inertia Values, pg. 85) to load inertia (rotating components).
i.e.: $8.525 \mathrm{lbs} .-\mathrm{in} .{ }^{2}($ Load WR2)
+1.718 lbs .-in. 2* *
10.268 Ibs.-in. ${ }^{2}$ (Total System WR²)

Double-check size by computing new data with torque formula.

* (CB-6 WR²—Pg. 25)
$T=\frac{W R^{2} \times R P M}{5.55(\text { for brake) }}$
$\mathrm{T}=10.268 \times 200=370 \mathrm{lbs} .-\mathrm{in}$. 5.55

CB-6 is correct size.

Note: All calculations shown assume zero compliance in driven, as well as driving, components. Compliance in the system reduces the torque required to accelerate the total inertial load to full RPM.
istribuidor

Magnetically Actuated Clutch Operation Principles \& Performance DL \& MAC Series

Clutch Operation

The inside diameter of the spring is larger than the outside diameter of the shaft hub. One end of the spring (control tang) is fastened to the control collar (or armature). When the coil is de-energized, the hubs rotate independently of each other. The free hub (affixed to the spring). the spring and the collar rotate as a unit. The opposing shaft hub is not fastened to the spring and rotates as another unit. The coil housing is stationary and piloted on the shaft bearing. A ground pin placed in the retaining tab secures the coil housing from rotating.

When the coil is energized, the control collar is pulled and held against the shaft flange. The momentary relative motion between spring and hubs "wraps" the spring, coupling the two hubs positively. All torque is transmitted through wrapped spring. Magnetic force is only necessary to maintain a tight spring grip for total torque transfer.

Performance Profile

Current and speed response profile

$\mathrm{T}_{1}=$ Time to engage (TTE) (Electrical build up and collar movement and spring wrap time).
$T_{2}=$ Time to speed (TTS).
$\mathrm{T}_{3}-\mathrm{T}_{4}=$ Armature disengagement time (ADT).
$\mathrm{T}_{5}-\mathrm{T}_{3}=$ Time to zero (TTZ) (Load and speed dependent).

Characteristics of Disengagement

Control collar release time (ADT) is affected somewhat by speed, load and the above three variables. The electrical circuit, however, has a major impact on the MAC-45's disengagement performance. Voltage transients and bleed down time should be minimized. The optimum suppression network for an application using the MAC-45 is represented by circuit C , which incorporates a 1 N4004 series
diode and a zener diode with two times the coil voltage. Omitting the zener (circuit B) would result in a less expensive circuit but at the expense of minor decrease in performance. Circuit A represents the quickest disengagement time but provides no protection for voltage transients.

Questions \& Answers

Relating to Standard Genuine Wrap Spring Products

1. Question: What changes are necessary to convert a CB series clutch from CW to CCW and vice versa?

Answer: For all CB units, the following parts must be changed; the drive spring, brake spring, anti-overrun spring, antiback spring and plate subassembly. The cams must also be reversed. Additional requirements: on CB-5, -6 and -8 units, the actuator subassembly must be changed. On CB-6, -8 and -10 (DC only) the coil subassembly must be changed. On CB-10 (AC only), the coil subassembly would require a new coil kit. All other components can be reused. The differential must also be reset after the unit has been reassembled.
2. Question: How is the spring differential set on a CB Series clutch? Why is this important?
Answer: This setting is important because it establishes the relationship of the clutch spring to the brake spring. If the setting is incorrect, the unit may fail due to excessive wear or may not operate at all. The differential setting has been preset by the factory for "out-of-the-box" CB Series clutches. See page 80 for a detailed explanation of spring differential adjustment.
3. Question: Can the input or output of a CB Series clutch/brake be reversed?

Answer: The standard CB Series clutch, which includes the anti-overrun clutch feature, cannot readily be reversed. However, if input reversal is required, please contact your local Thomson representative for additional information.

One of the standard features of the CB Series clutch/brake is the anti-back spring. While this spring is required to achieve stopping accuracy, it also prevents the output from being reversed. Therefore, like the input of a standard CB Series clutch/brake (incorporating the AO feature), the output cannot and should not be reversed.
4. Question: How often should a Deltran wrap spring clutch be lubricated?
Answer: Under normal operating conditions, lubrication is not necessary because the bearing surface components are manufactured from oilimpregnated, powdered metal materials.
5. Question: Can a single-stop CB Series clutch readily be changed to a multiplestop unit and vice versa?
Answer: The serrated control of the CB collar design facilitates easy changeover to a multiple-stop collar. Please refer to the assembly/disassembly instructions for the appropriate CB model. See Stop Collars, page 61.
6. Question: Can the output of the CB Series clutch be adjusted after installation?

Answer: Certainly. The serrated design of the control collar assembly allows repositioning the cam after the unit has been installed. See page 61.
7. Question: How is rotation determined?

Answer: For the CB, SAC \& SP Series, determine the proper rotation by viewing the unit from the input hub end. For sizes 2 through 6, the input hub has three holes, while sizes 8 and 10 input hubs each have six holes. For the PSI Series, determine the proper rotation by viewing the clutch from the input end. For HUB input units, look at the free hub when determining rotation. For SHAFT input units, look at the shaft hub when determining rotation. Also, see the appropriate pages of this catalog or contact your local Thomson representative.
8. Question: What is necessary to assure that a CB model wrap spring clutch/brake stops consistently and accurately?

Answer: In most cases when a CB does not position accurately, there is insufficient inertia to fully wrap down the brake spring. This situation can easily be resolved by either adding mass to the output or increasing machine speed.

Remember, the CB Series clutch is an RPM-inertia-sensitive device. The specified minimum inertia must be met for the CB Series clutch/brake to operate properly.
9. Question: What are the possible causes of CB Series clutch slippage?

Answer: Any slippage in a CB is usually caused by an incorrect differential setting. See the adjustment and repair section of this catalog on page 80 .
10. Question: What does the antioverrun spring do?

Answer: The anti-overrun spring feature prevents overhauling loads from over-running the input. The anti-overrun is an internal spring with an interference fit that slips in one direction but transmits torque in the other.
11. Question: Can the anti-overrun feature easily be incorporated into a non-anti-overrun CB Series clutch?

Answer: This is easily accomplished on the CB-5, 6, 7 and 8 units, which only require a new input hub and antioverrun spring. All other CB models must be completely disassembled to replace the output shaft assembly and input hub and add the anti-overrun spring.

The "standard" CB Series clutch has the anti-overrun spring included. We recommend all CB Series clutches be purchased with the AO spring, if possible.

12. Question: How much torque can a Genuine Wrap Spring unit brake?

Answer: The PSI, SAC \& SP model S units are capable of braking 10% of their static torque rating. By incorporating the over-travel stop feature into the PSI and SP series model S units, brake torque increases to 20% of static torque rating.

In general, the CB Series clutch is capable of stopping 50% of the unit's static torque rating.

Questions \& Answers

Relating to Standard Genuine Wrap Spring Products

13. Question: What should be checked when a CB Series unit doesn't actuate on each revolution?

Answer:

a) Check for coil input voltage.
b) Check actuator cam clearance. With the collar biased towards the actuator, there should be a $.010^{\prime \prime}$ to $.030^{\prime \prime}$ air gap between the bottom of the actuator and tip of the cam.
c) Check the setting. See Question 21 to reset or replace the solenoid.
14. Question: Can I use any coil with a one-shot power supply?

Answer: Yes, the one-shot power supply can be used with either AC or DC coils. However, when selecting a coil, remember that higher resistance results in slower response and conversely, lower resistance increases response speed.
15. Question: What is the purpose of the holes in the CB, SAC \& SP Series plate assembly?

Answer: There are either three or four holes plus an anti-rotation slot on the CB, SAC \& SP Series plate assemblies.

These holes are intended for mount ing convenience These clutch/ brake units are shaft mounted, so the plate should simply be restricted from rotat-
ing. These units must have some axial compliance to operate properly.
16. Question: How can coil voltage of a wrap spring clutch coil be determined?
Answer: Models CB-6, 7, 8 and 10 have voltage markings near the terminal tabs. CB-2, 4 and 5, as well as SAC models, show the voltage on the back of the coil bracket.
17. Question: What is the meaning of the numbers stamped on The Genuine Wrap Spring clutches?

Answer: The Genuine Wrap Spring clutches are given an eightdigit number. This number translates into a description of your product. Example: 123-45-678
\#1 identifies the product series.
\#2 identifies whether the unit is domestic or metric.
\#3 identifies the size of the unit.
\#4 identifies hub input and rotation.
\#5 identifies special features.
\#6, \#7, \#8-this three-digit number is serial number assigned to identify specific features of each unit.
18. Question: Why doesn't a model CB-6 with 1 " bore include a keyway?
Answer: There is not enough material in the shaft of a $1^{\prime \prime}$ bore CB-6 to accommodate a keyway. If a keyway is necessary for a specific application requiring a CB-6, the $3 / 4^{\prime \prime}$ bore size should be chosen.
19. Question: How do I know if my clutch was made with the old style, one piece collar or the split cam design?
Answer: Currently, all new Genuine Wrap Spring Standard and Super CB-5, $-6,-7,-8$, and SAC-5, and SAC-6 units are manufactured with the split cam design. The easiest way to identify the split cam design is by looking at the pivot pin and actuator. If the unit is configured with the split cam design, there will be a small plastic spacer between the pivot pin and the actuator. The actuator will also have two slots for the plunger. The older design had no spacer, and there was only one slot for the plunger and actuator interface.
20. Question: How can I convert my existing one-piece collar to the split cam design?
Answer: To upgrade an older style (sin-gle-piece) collar to the split cam design, the sleeve must be replaced. (For CB-5, 6,7 and 8 models only). The singlepiece unit is replaced by a brake sleeve, coupling sleeve and a drive sleeve. In addition to changing the sleeve, the actuator must also be replaced. The position of the actuator on the cam is slightly different, and the new actuator compensates for this change. Refer to the appropriate pages of this catalog for replacement part numbers.
21. Question: How can the solenoid be reset or replaced?

Answer: The following instructions are to be used when resetting or replacing the solenoid.

Collar-Actuator Clearance

1. Loosen the solenoid adapter plate such that the solenoid can be easily repositioned.
2. If the clutch is equipped with an actuator limit stop, loosen it and move it out of the way.
3. Energize the solenoid.
4. Align the cam face and actuator tip as shown in Figure 1.
5. Push the collar as indicated by the arrow in Figure 1 to take up the free collar play.
6. Check to ensure that the plunger is properly seated.
7. Using a shim between the actuator tip and cam face, set the collar actuator clearance between .010 and .030 by repositioning the solenoid assembly.
8. Tighten the solenoid adapter plate screws.
9. De-energize the solenoid and repeat steps 2 through 5 .
10. Re-check the clearance.
11. If equipped with an actuator limit stop, re-energize the coil and set the limit stop as follows:
DC Coils - Set the limit stop so it just contacts the actuator.
AC Coils -Set the actuator-limit stop clearance of $.005-.020$ at the closest point.
NOTE: It may not be possible to completely eliminate solenoid buzzing on AC solenoids.

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018

CB Spring Differential Adjustments

Non-Split and Split Cam Units

All Super CB and all CB series clutch/ brakes are factory preset to the proper spring differential overtravel. Should a component require replacement and the springs are affected, it is advisable to mark the two spring tang slots to ensure correct reassembly. If this is not possible, use the following procedure to reset the springs.

(Sizes 2, 4 and 10)
Spring Differential Adjustments for Non-Split Cam Units
Super CB and CB Series (Sizes 2, 4 and 10 Only)

1. Remove the retaining ring from the input hub.
2. Rotate the clutch so the brake spring is fully wrapped down.
Note: Merely rotating the unit until the actuator hits the cam will not fully engage the brake spring. The output shaft must be rotated in the driving direction until the brake spring fully wraps down.
3. With the brake fully engaged (per step 2), pull the clutch spring out of its slot and allow it to jump to wherever it comes to rest.
4. The clutch spring should be between two slots. Unwrap the spring and push it back into the nearest slot.
5. Push the input hub back into place, release the actuator.
6. Rotate the clutch until the brake spring fully wraps down again.
7. With the brake fully engaged, hold the shaft with one hand and release the actuator.
8. The collar will jump forward as the brake is released and the clutch engages.

The amount of overtravel varies with the unit.

Model	Overtravel
CB-2	.09 to $.19^{\prime \prime}$
CB-4	.19 to $311^{\prime \prime}$
CB-10	.62 to $75^{\prime \prime}$

Note: Non-Split Cam design units
9. To obtain the overtravel, use a scale to measure the distance between the tip of the actuator and the tip of the cam. (See picture below)
10. If the overtravel is within specified limits, reinstall the retaining ring, the unit is set.
11. If the overtravel exceeds the specified amount, move the brake spring back one slot against the direction of rotation and repeat steps 2-9.
12. If the overtravel is less than the specified amount, move the brake spring forward one slot in the direction of rotation.

Note: If the unit is disassembled and the drive and/or brake springs do not need to be replaced, proceed as follows:

- Reposition the drive and brake springs to their original positions onto the output shaft assembly.
- Reassemble the clutch and position the spring tangs of the drive and brake springs in the factory marked locations on the control collar assembly (on the control collar, there are designated slots marked with a recessed punch mark).
- After the unit is completely assembled, the differential setting should be back to its original setting.

(Sizes 5, 6, 7 and 8)

Spring Differential Adjustments

 For Split Cam Units (5, 6, 7, and 8)To adjust the differential on split cam units (Sizes 5, 6, 7 and 8), use the following procedure:

1. Slide the retaining ring, stop cam and coupling towards the free hub (input), separating the two split sleeves.
2. Move the brake sleeve spline in the opposite direction of the drive to wrap down the brake spring.
3. Hold the brake spring sleeve spline in place and slide the coupling onto the splines to secure the two sleeves.
4. Slide the stop cam onto the splined section and re-insert the retaining ring into the groove.
5. Rotate the clutch until the brake spring fully wraps down again.
6. With the brake fully engaged, hold the shaft with one hand and release the actuator.
7. The collar will jump forward as the brake is released and the clutch engages.
8. To obtain the overtravel, use a scale to measure the distance between the tip of the actuator and the tip of the cam. (See picture at left)

If the overtravel is too small or large, repeat steps 1-8 above.
The amount of overtravel varies with the unit.

Model	Overtravel
CB-5	.15 to $.25^{\prime \prime}$
CB-6	.19 to $.37{ }^{\prime \prime}$
CB-7	.37 to $.50^{\prime \prime}$
CB-8	.37 to $.50^{\prime \prime}$

Note: Split cam design units

Mounting Requirements
 Super CB, Standard CB, SAC and SP Units

(All plated mounted wrap spring products)

Horizontal \& Vertical Mounting

The Genuine Wrap Spring ${ }^{\text {TM }}$ clutches are self-contained packaged products that are easy to mount. A few simple precautions should be taken to ensure maximum life.

All Genuine Wrap Spring clutch products are designed for parallel shaft applications where they are fully supported by the shaft on which they are mounted. In the case of wrap spring clutch/brakes (CB), the through shaft is always the output. Connecting the parallel shaft to the CB input can be accomplished by use of a belt, chain or gear drive. CB models must be mounted with the shaft(s) in a horizontal position (Figure 1). If vertical mounting is required, see Figure 2.

Preferred Horizontal Mounting

Figure 1 - Shows an ideal CB mounting. The unit is locked to the output shaft with a key and set screws. The mounting plate is restrained from rotating with a pin but is not restrained axially, reducing the load on the CB's internal plate bearing.
The anti-rotation device employed must be able to withstand the braking torque required by the load.

It may be desirable to have easy access to the input for changing belts, etc. In this case, the clutch/brake can be mounted on a stub shaft. If so, the unit must still be fully supported. Overhung loads on the input member must be avoided to secure long radial bearing life.

Optional vertical mounting See Figure 2 note.

Figure 2

Optional Vertical Mounting

Figure 2 - When applying a wrap spring vertically, the mating drive member (pulley, sprocket or sheave must be bearingsupported as shown in Figure 2. This is necessary to eliminate the axial loading that will occur from the weight of the mating drive member (pulley, sprocket or sheave).

Optional Mounting Configurations

Preferred pulley mounting
Figures 3 and 4
Illustrate how proper support can be provided. Input members are generally face mounted to the input hub of the unit as shown in Figure 1. This is facilitated by drilled and tapped holes provided in the free hub flange.
The setup shown in Figure 3 is possible if the radial load to the input hub of the clutch is small compared to the specified load. With a substantial load, arrange the pulley over the centerline of clutch free hub as shown in Figure 4.

The solution presented here is better than that in Figure 3. Place one support bearing as close to the pulley as possible. Use a torque arm for anti-rotation.

Figure 4

Small units (sizes 2, 4, and 5) are provided with pilot holes in the output shaft and guide drilling through the machine shaft for attachment of the unit, accomplished by a pin.

Mounting Requirements

Mounting Thread Engagement

Thread Engagement Requirements

Just a reminder . . . while mounting a sprocket or pulley to the input hub of your CB-2, -4, -5, -6, -7, -8 or -10 or SAC-2, $-4,-5$ or -6 , the screws/ bolts used must not protrude through the flange or hub. This will interfere or jam the control collar assembly, therefore causing the clutch to malfunction by failing to "drive" or causing the clutch to "slip." Please refer to the following chart for maximum thread engagement:

CB/SAC-2 $=.150$
CB/SAC-4 $=.280$
CB-7 = . 280
CB-8 $=.360$
$C B-10=.500$

Application Analysis

1. Function to Be Performed

1.1 What work is to be done?

Give a basic description of the type of machine and what the clutch/brake is to do. This is important for the application engineers since they may have had experience with this type of application previously.
Example: The application is on a new design for a riveting machine. The clutch will control an eccentric, which will drive home the rivet.
Example: A new automatic bank teller will require a clutch or clutch/brake to deliver the money to the customer after transaction.

1.2 Is it bi-directional?

There are certain applications that require torque to be transmitted in both directions of rotation with one clutch. When this is the case, a friction clutch is generally considered, NOT a wrap spring clutch. There are applications, however, where special wrap spring clutches can be designed for bi-directional applications.
Example: A clutch coupling is required to transmit torque in both CW and CCW rotation and to decouple the load from the drive upon command. PSI engineers designed a wrap spring clutch that can drive in both directions of rotation and, when commanded, will completely decouple the load from the drive, all with a single spring.

1.3 Will it require torque modulation?

Certain applications require "soft" starts or stops. A friction clutch or brake can accomplish this by reduced voltage to the coil. A wrap spring clutch or brake CANNOT be torque modulated, BUT the effects can be minimized by use of a flexible coupling or a properly shaped cam.
Example: A conveyor that contains high but small bottles may require soft starts so that the bottles do not fall over.

Example: A reversing drive for a moving platen copying machine may require a soft start so as not to put vibrations into the machine during the copying cycle, but, during the return, these vibrations may be of no consequence. Thus a friction clutch could be used for the copy cycle and a spring clutch (MSC) for the return.
Example: To minimize the shock and vibration during braking when using a CB or SP S style clutch, compliance can be introduced into the plate retention method.
1.4 Start, Stop, or Start/Stop?
1.4.1 START.

Some applications require starting the load periodically but are not critical in the final stopping position when the clutch is released.
Example: Application is feeding wire or paper into a set of rollers which then continue to draw the wire or paper off the larger spool, independent of the clutch. A PSI or SAC style model SS
could be used. The SS style clutch would allow the output of the clutch to overrun the input, allowing the continued motion of the wire when the clutch is no longer engaged. An MSC or MAC may also be suitable.
Example: Application is to use clutches for a two-speed drive. This would not require an accurate stopping position. The PSI model SS or SAC could be used.

1.4.2 STOP.

Certain applications require only stopping or holding. In the wrap spring section of the catalog, there would not be a unit specifically designated as a brake; however, a PSI style clutch could be used as a brake by tying one of the hubs to mechanical ground. MAC or MSC can be configured for limited braking
Example: The vertical axis of robot is controlled by a ball screw. A brake can be used to hold that position in the event of power failure.

1.4.3 START/STOP.

Single-revolution applications require a start/ stop function. This ensures that the load is in a known position at all times. The PSI, SP and SAC style model S clutches plus the CB style clutch/ brake are used for these types of requirements.
Example: Most any cam controlling application will require accurate positional control of the start of the cycle. At the end of the cycle the brake stops the motion where the cam is again in its known starting position for the next cycle.

2. Load

2.1 Inertia-does it vary?

An important factor to consider is that a friction clutch's starting time is inertial and frictional load dependent while that of the wrap spring clutch is not. The time to speed of a wrap spring is, for all practical purposes, constant irrespective of load, within its torque capacity.
Example: A printer will use rolls of paper and it will require a clutch to provide accurate positioning. A spring clutch may be the better choice for this situation since it is not affected by the changing inertia of the roll as the paper is used.

2.1 Friction—does it vary? How?

Load friction varies with bearing wear and over time will increase the friction seen by the clutch. More important, the load may vary through the cycle and be both positive and negative as with most cam-type applications. The importance of knowing how this varies and to what extent should be known for proper clutch application.

3. RPM

3.1 Is the RPM constant?

Many complaints come from users of CBs because of inaccurate stopping position. Upon investigation, it is found that one RPM is used to initially set up the machine and then a faster RPM used for operation. This inaccuracy happens because at lower RPM, there is less energy contained in the load and the brake spring does not fully wrap down; when the RPM is increased to the run speed, the brake spring fully wraps down and the stop position changes.

Application Analysis

It also is common that, to increase production of a machine, the RPM has been increased, and the clutch no longer functions the same. As the RPM goes up, the dynamic torque increases proportionately and can cause an over-torque condition.
It is important to know the RPM and if it changes during setup.
3.2 Is the rotation always in the same direction?

There can be situations when the input rotation direction changes during manual setup operations or normal operation of the machine. If the wrap spring clutch has the anti-overrun (AO) feature, this cannot be done. Without antioverrun, the input can be rotated in the opposite direction of rotation. The spring will tend to open and slip on the input hub.

4. Timing Requirements

The time of initiating motion or stopping motion is always important in any mechanical system.

4.1 TTS — Time To Speed

This is the time from initially applying voltage to the coil or solenoid of the clutch until the load has reached full RPM.

The machine synchronization and permissible cycle rate can depend on this parameter. Spring clutches are very consistent in TTS since they are not dependent on the load; thus they will allow certain variations in load and still have consistency in timing.

4.2 Duty Cycle

Duty cycle is most often used as a means to determine heat buildup of an electrical device.
For single-revolution spring clutches, the cycle duration is dependent on the number of stops on the control collar and the RPM. Cycle rate is the number of cycles per minute. Both are important to know.

5. Stopping Position

5.1 Cycle-to-cycle accuracy requirements

Cycle-to-cycle accuracy is usually given as angular accuracy for single revolution, indexing style clutches; PSI, SP, SAC and CBs.
Example: The application is that a clutch is to control a cut-off knife and will require stopping
position accuracy of 5 degrees cycle to cycle.
Stopping position depends on system conditions at the time of stopping. This means that if system conditions, such as RPM or friction, change from one stop to the next, the stopping position may also change. For stopping accuracy, the brake must come to a positive, known position. For the PSI or SP style models with overtravel stop, this would mean that the pin comes all the way to the limit stop. For the CBs it would mean that the brake spring wraps fully down on the brake hub. Once the actuator contacts the control collar to disconnect the clutch, the stop point is dependent on the system inertia to carry the load forward to this brake position. If the system friction is high, there may not be enough inertia; or if the RPM decreases, the energy of the inertia also decreases and may no longer be enough to reach full brake.
Example: A CB with a 2-stop collar is not realizing 180 degrees between stops. This could be because system friction is different at each stop.
Example: A system runs at low RPM for initial setup of the machine, then increases to a normal run speed. The stopping position is no longer the same. The energy of inertia is now higher, and the stopping position will advance since at the lower RPM the brake spring might not have been fully wrapped down on the brake hub.

6. Life Requirements

6.1 Cycles

Cycle life is the required number of times the clutch is engaged and disengaged during its desired operating life. Based on the application data given, an estimate can often be made on the number of cycles that can be expected. This is a common request, but each application is somewhat different, and life testing in the machine is the best way to give an accurate value.

6.2 Time

In certain applications this may be of greater concern than the number of cycles.
Example: A clutch is to be used to control a fire damper door as a safety device, which must be able to function over a minimum life of 10 years. Hopefully the clutch will never have to be used, but this information will determine, perhaps, surface treatment and/or materials.

Example: The main drive clutch of a machine will be engaged $10-20$ times per day, 200 days, over five years. Life of the machine is to be 10,000 hours minimum. This may dictate the type of bearings required in the clutch.

7. Environment

7.1 Business or office equipment

This is usually a well-known type of environment but can sometimes differ from the norm.

Example: The clutch in a copier will be located
adjacent to the heat lamp and can have a local temperature of 130 degrees C. This situation would require careful consideration for the clutch to properly perform over the expected life, such as special bearing oil.

7.2 Industrial

Most industrial environments can be assumed, but there may be unusual conditions that must be considered.
Example: The clutch will operate a wrapping mechanism on a textile machine. There will be cotton fiber in the air. This cotton fiber can collect on the actuator and not allow proper function, but it will also collect on the oil of the powdered metal bearings. This will act as a wick to draw the oil out and cause premature bearing failure if not adequately protected from the cotton fiber. The solution in this case could be an enclosure/ cover.

7.3 Agricultural or outdoor

This type of application will require the clutch to be constructed with materials to meet harsh conditions of weather and contamination.
Example: The clutch will control a grain drill. The PSI-5 and PSI-6 farm clutches are constructed using special control collars with dirt seals and shaft materials that will stand up to this operating environment.

8. Special Requirements

8.1 Input and direction of rotation

With the exception of the CBs, spring clutches can be operated either as a shaft or hub input. The CBs can only be operated as hub input.
The direction of rotation can be either clockwise or counter clockwise. The direction of rotation is determined by looking from the free hub end.

8.2 Bore size

Always try to use the catalog standard sizes for best economy and delivery. If this is not possible, special bore sizes can be obtained.

8.3 Voltage of coil

Always try to use the catalog standard coil voltages. The most popular is 24 VDC; however, special voltages can be supplied if required.
8.4 Gears, pulleys or special free hub configuration
If the anticipated volume in the application will allow, it may be more economical for the factory to supply the clutch directly with the requested gear, pulley, sprocket or other special feature. It should be noted that Thomson has an in-house powdered metal facility so that the input hub and the special feature could be molded as an integral part. Consult with the factory to determine the best method of manufacture.

Disassembly \＆Assembly Instructions

CB－2 and－4

Disassembly

1．Important－Ensure that the spring tang location is marked before the unit is taken apart．
2．Rotate the input hub until the actuator hits the stop cam．
Continue to apply torque in the direction of rotation to the output shaft until the brake spring is fully wrapped down．
3．Remove the retaining ring from the input hub end．
4．Remove input hub－turn in direction of rotation only．
5．Release the actuator so that the brake is disengaged．
6．Remove the collar assembly－extract the collar toward the clutch spring end．

Assembly

1．Replace parts as needed．
2．Install the collar assembly over the output shaft and spring assembly． （Pull the clutch spring tang through the collar with needle－nosed pliers， taking care not to distort the spring．）
3．Install the input hub－turn in direction of rotation only．
4．Reset spring differential as needed．（See＂CB Spring Differential Adjustments＂on page 80．）
5．Install the retaining ring with smooth surface facing input hub．
Note：Anti－back springs and hubs should not be disassembled because of the difficulty in maintaining endplay setting between hubs．The unit should be returned to the factory for service．

CB－5 and Super CB－5

Disassembly

1．Rotate the input hub until the actuator hits the stop cam． Continue to apply torque in the direction of rotation to the output shaft until the brake spring is fully wrapped down．
2．Remove the retaining ring from the input hub end．
3．Remove thrust washer（Super CB－5 only）．
4．Remove input hub－turn in direction of rotation only．
5．Release the actuator so that the brake is disengaged．
6．Remove the collar assembly（see split cam design）by extracting the col－ lar toward the clutch spring end．

Assembly

1．Replace parts as needed．
2．Install the collar assembly over the output shaft and spring assembly． （Pull the clutch spring tang through the collar with needle－nosed pliers， taking care not to distort the spring．）
3．Install the input hub－turn in direction of rotation only．
4．Install thrust washer（Super CB－5 only）．
5．Install the retaining ring with smooth surface facing input hub．
6．Reset spring differential as needed．（See＂CB Spring Differential Adjustments＂on page 80．）
Note：Anti－back springs and hubs should not be disassembled because of the difficulty in maintaining endplay setting between hubs．The unit should be returned to the factory for service．

CB－6，－7 and－8

Disassembly

1．Rotate the input hub until the actuator hits the stop cam． Continue to apply torque in the direction of rotation to the output shaft until the brake spring is fully wrapped down．
2．Remove the retaining ring from the input hub end．
3．Remove input hub－turn in direction of rotation only．
4．Remove the retaining ring from the mounting plate end．
5．Remove the output shaft and collar assembly（see split cam design） from the mounting plate－turn in direction of rotation only．Do not remove brake hub from mounting plate．
6．Remove the collar assembly（see split cam design）from the output shaft by extracting the collar toward the brake side of the output shaft．

Assembly

1．Replace parts as needed．
2．Install the collar assembly（see split cam design）over the output shaft and spring assembly．（Pull the brake spring through the collar with needle－nosed pliers，taking care not to distort the spring．）
3．Install the output shaft and collar assembly on the mounting plate－turn in direction of rotation only．
4．Install retaining ring on the mounting plate end with its smooth surface facing brake hub．
5．Install the input hub．
6．Install the retaining ring on the input hub with smooth surface facing the hub．
7．Reset spring differential as needed．（See＂CB Spring Differential Adjustments＂on page 80．）

Super CB－6，－7 and－8

Disassembly

1．Rotate the input hub until the actuator hits the stop cam．Continue to apply torque in the direction of rotation to the output shaft until the brake spring is fully wrapped down．
2．Remove the retaining ring from the input hub end．
3．Remove the input hub with thrust washer－turn in direction of rotation only．（Super CB－7 and 8 note the orientation of the flange for assembly．）
4．Remove the retaining ring from the mounting plate end．
5．Remove the output shaft and collar assembly（see split cam design）from the mounting plate－turn in direction of rotation only．Do not remove brake hub from mounting plate．
6．Remove the collar assembly（see split cam design）from the output shaft by extracting the collar toward the brake side of the output shaft．

Assembly

1．Replace parts as needed．
2．Install the collar assembly（see split cam design）over the output shaft and spring assembly．（Pull the brake spring through the collar with needle－nosed pliers，taking care not to distort the spring．）
3．Install the output shaft and collar assembly on the mounting plate－turn in direction of rotation only．
4．Install the retaining ring on the mounting plate end with its smooth sur－ face facing the brake hub．
5．Install the input hub with thrust washer（flange oriented correctly on Super CB－7 and 8）．
6．Install the retaining ring on the input hub with its smooth surface facing the hub．
7．Reset spring differential as needed．（See＂CB Spring Differential Adjustments＂on page 80．）

CB－10 and Super CB－10

Disassembly

1．Important－Ensure that the spring tang location is marked before the unit is taken apart．
2．Rotate the input hub until the actuator hits the stop cam．Continue to apply torque in the direction of rotation to the output shaft until the brake spring is fully wrapped down．
3．Remove the retaining ring from the input hub end．
4．Remove the input hub－turn in direction of rotation only（CB－10）．（Super CB－10 remove the input hub with the thrust washer－turn in direction of rotation only and note the orientation of the flange for assembly．
5．Remove the retaining ring from the mounting plate end．
6．Remove the output shaft and collar assembly from the mounting plate－ turn in direction of rotation only．Do not remove brake hub from mounting plate．
7．Remove the collar assembly from the output shaft by extracting the collar toward the brake side of the output shaft．

Disassembly \& Assembly Instructions

Assembly

1. Replace parts as needed.
2. Install the collar assembly over the output shaft and spring assembly. (Pull the brake spring through the collar with needle-nosed pliers, taking care not to distort the spring.)
3. Install the output shaft and collar assembly on the mounting plate - turn in direction of rotation only.
4. Install the retaining ring on the mounting plate end with its smooth surface facing the brake hub.
5. Install the input hub and reset spring differential as needed (CB-10). Install the input hub with thrust washer flange oriented correctly and reset the spring differential as needed (Super CB-10). (See "CB Spring Differential Adjustments" on page 80.)
6. Install the retaining ring with smooth surface facing the hub.

SAC-2, -4 and -5

Disassembly

1. Remove the retaining ring from the input hub end.
2. Remove input hub - turn in direction of rotation only.
3. Remove the stop collar by extracting the collar toward the clutch spring end.

Assembly

1. Replace parts as needed.
2. Install the stop collar over the output shaft and spring assembly. (Pull the clutch spring tang through the collar with needle-nosed pliers, taking care not to distort the spring.)
3. Install input hub - turn in direction of rotation only.
4. Install retaining ring.

SAC-6

Disassembly

1. Remove the retaining ring from the input hub end.
2. Remove input hub - turn in direction of rotation only.
3. Remove the retaining ring from the mounting plate end.
4. Remove the output shaft and stop collar assembly from the mounting plate - turn in the direction of rotation only. Do not remove plate hub from mounting plate.
5. Remove the control stop from the output shaft by extracting the collar towards plate side of the output shaft.

Assembly

1. Replace parts as needed.
2. Install the stop collar over the output shaft and spring assembly.
3. Install the output shaft and stop collar assembly on the mounting plate turn in direction of rotation only.
4. Install the retaining ring to output shaft.
5. Install the input hub.
6. Install the retaining ring on the shaft input end.

PSI

Disassembly

1. Remove retaining ring from shaft.
2. Remove hub end by rotating opposite to drive direction.
3. For Model S, remove stop collar and spring by rotating opposite to drive direction and pulling to remove output tang from hub.

Assembly Model S

1. Assemble spring to output hub by rotating opposite to direction of rotation. Output tang must be inserted completely into hole in hub during this assembly.
2. Assemble stop collar over spring by deflecting input tang with long-nose pliers. (Reach through collar with pliers.)
3. Assemble input hub by rotating opposite to direction of rotation.
4. Assemble retaining ring to shaft.

Assembly Model 0 \& SS

1. Assemble spring and stop collar (or sleeve) with control tang located in slot in collar.
2. Assemble spring and collar to output hub by rotating opposite to direction of rotation.
3. Assemble input hub by rotating opposite to direction of rotation.
4. Assemble retaining ring to shaft.

Friction Clutches \& Brakes

How to Select

Brake Selection

Step 1

Determine if the application requires a static (holding) or dynamic (stopping) brake.

Step 2

For static brake applications, determine the required static torque to hold the load under worst case conditions, considering system drag. Skip to Step 5 .

Step 3

For dynamic braking applications with a specific stopping time requirement, first calculate the dynamic torque necessary to decelerate the load, using the inertiatime equation:

$$
T_{D}=(0.1047(I \times \omega) / t)-D
$$

where I = total system inertia lbs.-in.-sec², $\omega=$ shaft speed in RPM, $t=$ time to zero and $D=$ load drag. Next multiply by 1.25 to convert to static torque. Skip to Step 5.

Step 4

For those dynamic braking applications requiring only an ability to stall a load, calculate the appropriate static torque using the horsepower-RPM equation:

$$
\mathrm{T}_{\mathrm{S}}=1.25 \times 63000 \times(\mathrm{HP} \times \mathrm{K}) / \omega
$$

where HP = horsepower, $\mathrm{K}=$ service factor and $\omega=$ RPM OR refer to the charts found on page 89.

Step 5

Select a brake model from the catalog with a static torque rating greater than the required torque (service factor dependent). Verify that the selected brake fits into the available application envelope and mounting configuration.

Note: When braking dynamically, careful consideration must be given to proper energy dissipation. Calculate the total kinetic energy dissipation per cycle (E_{k}), and compare this to the allowable braking energy $\left(E_{b}\right)$ based on the frequency of engagement (N) given in the Energy Dissipation Chart on page 127. If the total kinetic energy dissipation per cycle is more than allowable, given the frequency of engagement, then consider using a larger series brake.

Clutch Selection

Step 1

For clutch applications with a specific acceleration time requirement, first calculate the dynamic torque (T_{D}) required to accelerate the load using the inertia-time equation:

$$
T_{D}=0.1047(I \times \omega) / t+D
$$

where $\mathrm{I}=$ rotational load inertia in Ibs.-in.sec 2 units, $\omega=$ differential slip speed in RPM, $\mathrm{t}=$ time to speed, and $\mathrm{D}=$ load drag torque reflected to the clutch. Next convert to static torque by multiplying by 1.25 . Skip to Step 3.

Step 2

For clutch applications requiring only an ability to accelerate a load, calculate the appropriate static torque using the horsepower-RPM equation:

$$
\mathrm{T}_{\mathrm{S}}=1.25 \times 63000 \times(\mathrm{HP} \times \mathrm{K}) / \omega
$$

where HP = horsepower, $K=$ service factor, and $\omega=$ differential slip speed in RPM OR refer to the charts in the engineering guidelines section.

Step 3

Select a clutch model from the catalog with a static torque rating greater than the required torque (service factor dependent). Verify that the selected clutch fits into the available application envelope and mounting configuration.
Note: When engaging a clutch dynamically (under load at speed), careful consideration must be given to proper energy dissipation. Calculate the total energy dissipated per minute:

$$
E=\left(E_{k}+E_{s}\right) \times N
$$

where $E_{k}=$ kinetic energy, $E_{s}=$ slip energy, and $N=$ cycle rate. If the total energy dissipation is more than allowable (see performance data tables), then consider using a larger series clutch.

General Notes

In some applications it may be necessary to consider clutch or brake inertia and engagement time in calculating load acceleration. If the inertia or engagement time of the clutch or brake selected represents more than 10% of the load inertia or acceleration time, use the above referenced Inertia-time equation to solve for acceleration time (t), using an inertia equivalent to the sum of the load inertia and the clutch or brake inertia (see performance data tables). Then verify that the sum of the acceleration and clutch or brake engagement times is still within the required acceleration time for the application.
For more information on other key factors that greatly affect clutch or brake life, such as ambient temperature, slip-speed and load energy, please contact us at 1-540-633-3400.

Selecting a Clutch or Brake

Torque, Horsepower \& Speed

Disregarding frictional losses in a pulley, gear or sprocket system incorporating a clutch and running at a constant speed, the HP delivered by the clutch equals the HP of the prime mover. However, the torque imposed on the clutch may be greater or less than the torque on the
prime mover depending on the ratio of the speed of the shafts. Generally, the faster the clutch shaft speed, the lower the torque required to drive the load.
The application charts below can be used as a quick and easy reference to deter-
mine the proper sizing of a clutch or brake based on motor horsepower and speed. However, when precise control and life expectancy are critical, all design considerations should be evaluated.

Light to Medium Duty Applications ($\mathrm{K}=1.5$)

Clutch or Brake Shaft Speed in RPM																						
		100	200	300	400	500	600	700	800	900	1000	1100	1200	1500	1800	2000	2400	3000	3600	4000	4600	5000
	1/50																					
H	1/20									erie	s 17											
0	1/12																					
R	1/8																					
S	1/6									rie	S 19											
E	1/4																					
P	1/3										Se	ries	$22 / 23$									
0	1/2																					
W	3/4												ies	6/28								
E	1																					
R	$11 / 2$														eries	30						
	2																					
	3																					
	5															Seri	ies 40					
	$71 / 2$																					

Heavy Duty Applications ($\mathrm{K}=3.0$)

Clutch or Brake Shaft Speed in RPM																						
		100	200	300	400	500	600	700	800	900	1000	1100	1200	1500	1800	2000	2400	3000	3600	4000	4600	5000
	1/50							Series 17														
H	1/20																					
\bigcirc	1/12							Series 19														
R	1/8																					
S	1/6										Series 22/23											
E	1/4																					
P	1/3												Series 26/26									
\bigcirc	1/2																					
W	3/4														Series 3							
E	1																					
R	$11 / 2$																					
	2														Series 40							
	3																					
	5																					
	$71 / 2$																					

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018

CS/CSC Series

Shaft-Mounted Clutches and Clutch Couplings

Electromagnetic clutches provide an efficient, electrically switchable link between a motor and a load. Clutches are used to couple two parallel shafts by the use of pulleys, gears or sheaves. While the field (electromagnet) assembly is prevented from rotating by an anti-rotation tab or flange, the rotor and armature assembly are mounted on a single shaft, with the rotor secured to the shaft. The armature is bearing mounted and free to rotate. When the coil is energized, the armature engages the friction surface of the rotor, thus driving the load.

Electromagnetic clutch couplings provide this same efficient, electrically switchable link between a motor and a load for inline shafts. While the field (electromagnet) assembly is prevented from rotating by an anti-rotation tab, the rotor and armature assembly are securely mounted on opposing inline shafts. When the coil is energized, the armature engages the friction surface of the rotor, coupling the two inline shafts, thus driving the load.

- Torque: 2.5 to 80 lbs .-in. (0.28 to 9.04 Nm)
- Diameters: 1.25 to 2.26 in. (31.8 to 66.8 mm)
- Efficient means of cycling load
- Fast response, repeatable performance
- Static or dynamic engagement
- Simple installation
- Economic cost
- Energy efficient

How to Order

* Other voltages available upon request

General Notes

- The air gap should be checked periodically to ensure proper operation. If it exceeds maximum recommended dimensions, the clutch or brake may not function properly.
- All friction faces must be kept free of grease and oil for proper operation.
- Consult factory for additional options.
- Actual starting and/or stopping times depend on application variables, manufacturing tolerances and friction material wear. Please consult factory for evaluation of actual use before applying specific values to your application.
- Flying leads are provided as standard, terminal style connection available upon request.
- Armature and rotor bore dimensions are minimums, with tolerance generally $.001 / .002$ larger to accommodate varying environmental conditions.
- Coil of 24 \& 90 volts are provided as standard, other coil voltages are available upon request.

Clutches and Clutch Couplings

Typical Applications

- Document handling
- Copiers
- Printers
- Collators
- Sorters
- Finishers
- ATM machines
- Currency counters
- Vending machines
- Postal handling equipment
- Ticket \& receipt dispensing
- Packaging
- Material handling
- Office automation

CS-11 Clutches \& CSC-11 Clutch Couplings

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.

CS Model

CSC Model

CS Model Shown

DIMENSIONS											
Model*	Static Torque lhs.-in. (Nm)	A: OD in. (mm)	B: OAL in. (mm)	C: Bore 0 in. (min)	F: Tab Height in. (mm)	G: Slot Height in. (mm)	H: Tab Width in. (mm)	J: Slot Width in. (mm)	K: Tab Thickness in. (mm)	L: Length in. (mm)	M: $\operatorname{Mtg} \emptyset x$ N: Length in. (mm)
CS-11B24-E04-E04	$\begin{aligned} & 5.0 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 1.38 \\ & (35.1) \end{aligned}$	$\begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.1) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (9.7) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 0.22 \\ & (5.6) \end{aligned}$	$\begin{array}{r} .507 \times 0.33 \\ (12.9 \times 8.4) \end{array}$
CS-11B24-E05-E05	$\begin{aligned} & 5.0 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 1.38 \\ & (35.1) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.1) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (9.7) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 0.22 \\ & (5.6) \end{aligned}$	$\begin{array}{r} .507 \times 0.33 \\ (12.9 \times 8.4) \end{array}$
CSC-11B24-E04-E04	$\begin{aligned} & 5.0 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 1.28 \\ & (32.5) \end{aligned}$	$\begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.1) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (9.7) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 0.22 \\ & (5.6) \end{aligned}$	NA
CSC-11B24-E05-E05	$\begin{aligned} & 5.0 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 1.28 \\ & (32.5) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.1) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (9.7) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 0.22 \\ & (5.6) \end{aligned}$	NA
PERFORMANCE											
Model	Static Torque Ibs.-in. (Nm)	Coil Voltage VDC	Resistance Ohms nom	Power Watts max	Armature Engage. msec	Armature Disengage. msec	Armature Inertia lhs.-in.-sec ${ }^{2}$	Rotor Inertia llos.in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipatio ft.-lbs./min	
CS-11	5.0 (0.56)	24/90	128/1800	5.0	5.0	18.0	3.5×10^{-5}	2.6×10^{-5}	0.2 (0.1)	175	
CSC-11	5.0 (0.56)	24/90	128/1800	5.0	5.0	18.0	3.4×10^{-5}	2.6×10^{-5}	0.2 (0.1)	175	

*See "How to order" model numbering system on page 90 for clutches \& clutch couplings.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Customer shall maintain concentricity between armature assembly and rotor shaft within . 003 T.I.R.
- Customer shall maintain a loose pin fit through the antirotation tab to prevent pre-loading of bearings.
- Other voltages available upon request.
- Initial working air gap at installation shall be .004/.009
- Customer supplied gear/pulley/sprocket is press-fit on the clutch armature assembly knurl.
- Rotor is secured to shaft by set screw or roll pin
- Clutch coupling armature assembly is secured to shaft by set screws and key.
- Metric bores available
- Static torque values above are burnished

CS-15, 17 Clutches \& CSC-15, 17 Clutch Couplings

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.

CS Model

CSC Model

CS Model Shown

DIMENSIONS													
Model*	Static Torque in. (mm)	$\begin{aligned} & \text { A: OD } \\ & \text { in. }(\mathrm{mm}) \end{aligned}$	B: OAL in. (mm)	C: Bore 0 in. (mm)	D: K'way Height in. (mm)	E: K'way Width in. (mm)	F: Tab Height in. (mm)	G: Slot Height in. (mm)	H: Tab Width in. (mm)	J: Slot Width in. (mm)	K: Tab Thick. in. (mm)	L:Lngth in. (mm)	M: Mtg 0 x N: Lg in. (mm)
CS-15B24-E04-E04	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.83 \\ & (46.5) \end{aligned}$	$\begin{aligned} & .250 \\ & \hline(6.4) \end{aligned}$	$\begin{aligned} & .286 \\ & (7.3) \end{aligned}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (27.9) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & \text { (12.7) } \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.38 \\ & \text { (9.7) } \end{aligned}$	$\begin{aligned} & .631 \times 0.33 \\ & (16.0 \times 8.4) \end{aligned}$
CS-15B24-E05-E05	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.83 \\ & (46.5) \end{aligned}$	$\begin{array}{r} 312 \\ (7.9) \end{array}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (27.9) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.38 \\ & \text { (9.7) } \end{aligned}$	$\begin{gathered} .631 \times 0.33 \\ (16.0 \times 8.4) \end{gathered}$
CS-15B24-E06-E06	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.83 \\ & (46.5) \end{aligned}$	$\begin{array}{r} 375 \\ (9.5) \end{array}$	NA	NA	$\begin{aligned} & 1.10 \\ & (27.9) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.38 \\ & \text { (9.7) } \end{aligned}$	$\begin{gathered} .631 \times 0.33 \\ (16.0 \times 8.4) \end{gathered}$
CSC-15B24-E04-E04	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.68 \\ & (42.7) \end{aligned}$	$. \begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$.286$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 1.10 \\ & \text { (27.9) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.38 \\ & \text { (9.7) } \end{aligned}$	NA
CSC-15B24-E05-E05	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.68 \\ & (42.7) \end{aligned}$	$\cdot \begin{array}{\|c} 312 \\ (7.9) \end{array}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.10 \\ & \text { (27.9) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & \text { (12.7) } \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.38 \\ & \text { (9.7) } \end{aligned}$	NA
CSC-15B24-E06-E06	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.68 \\ & (42.7) \end{aligned}$	$.375$	NA	NA	$\begin{aligned} & 1.10 \\ & \text { (27.9) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.38 \\ & \text { (9.7) } \end{aligned}$	NA
CS-17B24-E04-E04	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.85 \\ & (47.0) \end{aligned}$	$\begin{array}{r} .250 \\ (6.4) \end{array}$	$\begin{aligned} & .286 \\ & (7.3) \end{aligned}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 1.32 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (7.6) \end{aligned}$	$\begin{gathered} .631 \times 0.33 \\ (16.0 \times 8.4) \end{gathered}$
CS-17B24-E05-E05	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.85 \\ & (47.0) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.32 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (7.6) \end{aligned}$	$\begin{gathered} .631 \times 0.33 \\ (16.0 \times 8.4) \end{gathered}$
CS-17B24-E06-E06	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.85 \\ & (47.0) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.32 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (7.6) \end{aligned}$	$\begin{aligned} & .631 \times 0.33 \\ & (16.0 \times 8.4) \end{aligned}$
CSC-17B24-E04-E04	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.55 \\ & (39.4) \end{aligned}$	$\begin{array}{r} .250 \\ (6.4) \end{array}$	$.286$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 1.32 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (7.6) \end{aligned}$	NA
CSC-17B24-E05-E05	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.55 \\ & (39.4) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.32 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (7.6) \end{aligned}$	NA
CSC-17B24-E06-E06	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.55 \\ & (39.4) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.32 \\ & (33.5) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (7.6) \end{aligned}$	NA
PERFORMANGE													
Model	Static Torque lbs.-in. (Nm)	Coil Voltage VDC	Resistance Ohms nom.		Power Watts max	Armature Engage. msec	Amature Diseng. msec	Armature Inertia lbs.-in.-sec²		Rotor Inertia Ihs.-in.-sec ${ }^{2}$		Weight lbs. (kg)	Energy Dissipation ft.-lbs./min
CS-15	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	24/90	130/1800		5.0	8.0	22.0	5.9×10^{-5}		5.2×10^{-5}		0.4 (0.2)	295
CSC-15	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	24/90	130/1800		5.0	8.0	22.0	6.6×10^{-5}		5.2×10^{-5}		0.4 (0.2)	295
CS-17	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	24/90	108/1500		6.0	10.0	27.0	7.3×10^{-5}		11.4×10^{-5}		0.6 (0.3)	420
CSC-17	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	24/90	108/1500		6.0	10.0	27.0	8.1×10^{-5}		11.4×10^{-5}		0.6 (0.3)	420

[^9]- Metric bores available
- Other voltages available upon request

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018

CS-22, 26 Clutches \& CSC-22, 26 Clutch Couplings

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.
CS Model
CSC Model

CSC Model Shown

DIMENSIONS															
Mode**	Static Torque in. (mm)	$\begin{aligned} & \text { A: OD } \\ & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { B: OAL } \\ & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { C: Bore } \\ & \emptyset \\ & \text { in. } \\ & (\mathrm{mm}) \end{aligned}$	D: Kway Height in. (mm)	EKiway Width in. (mm)	F: Tab Height in. (mm)	G: Slot Height in. (mm)	H: Tab Width in. (mm)	J: Slot Width in. (mm)	K: Tab Thick. in. (mm)	L: Lngh in. (mm)	M: Mtg 0 x R: Lngth in. (mm)	$\mathrm{N}: ~(3)$ Mtg. Holes	P: Mitg. Hole BC \varnothing in. (mm)
CS-22B24-E05-E05	$\begin{aligned} & \hline 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 2.20 \\ & (55.9) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.52 \\ & (38.6) \end{aligned}$	$\begin{aligned} & 1.16 \\ & (29.5) \end{aligned}$	$\begin{aligned} & 0.44 \\ & \text { (11.2) } \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (9.1) \end{aligned}$	$\begin{aligned} & .756 \times .37 \\ & (19.2 \times 9.4) \end{aligned}$	NA	NA
CS-22B24-E06-E06	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & 157.4 \end{aligned}$	$\begin{aligned} & 2.20 \\ & (55.9) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.52 \\ & (38.6) \end{aligned}$	$\begin{aligned} & 1.16 \\ & (29.5) \end{aligned}$	$\begin{aligned} & 0.44 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (9.1) \end{aligned}$	$\begin{aligned} & .756 \times .37 \\ & (19.2 \times 9.4) \end{aligned}$	NA	NA
CS-22B24-E08-E08	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 2.20 \\ & (55.9) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$.564$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1.52 \\ & (38.6) \end{aligned}$	$\begin{aligned} & 1.16 \\ & (29.5) \end{aligned}$	$\begin{aligned} & 0.44 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (9.1) \end{aligned}$	$\begin{aligned} & .756 \times .37 \\ & (19.2 \times 9.4) \end{aligned}$	NA	NA
CSC-22B24-E05-E05	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 2.06 \\ & (52.3) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.52 \\ & (38.6) \end{aligned}$	$\begin{aligned} & 1.16 \\ & (29.5) \end{aligned}$	$\begin{aligned} & 0.44 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (9.1) \end{aligned}$	NA	NA	NA
CSC-22B24-E06-E06	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 2.06 \\ & (52.3) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.52 \\ & (38.6) \end{aligned}$	$\begin{aligned} & 1.16 \\ & (29.5) \end{aligned}$	$\begin{aligned} & 0.44 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (9.1) \end{aligned}$	NA	NA	NA
CSC-22B24-E08-E08	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 2.06 \\ & (52.3) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$.125$	$\begin{aligned} & 1.52 \\ & (38.6) \end{aligned}$	$\begin{aligned} & 1.16 \\ & (29.5) \end{aligned}$	$\begin{aligned} & 0.44 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (9.1) \end{aligned}$	NA	NA	NA
CS-26B24-E06-E06	$\begin{aligned} & 80 \\ & (9.04) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & 2.47 \\ & (62.7) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 1.34 \\ & (34.0) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (8.6) \end{aligned}$	$\begin{aligned} & .999 \times 0.47 \\ & (25.4 \times 11.9) \end{aligned}$	\#8-32	$\begin{aligned} & 1.375 \\ & (34.9) \end{aligned}$
CS-26B24-E08-E08	$\begin{aligned} & 80 \\ & (9.04) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & 2.47 \\ & (62.7) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 1.34 \\ & (34.0) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (8.6) \end{aligned}$	$\begin{aligned} & .999 \times 0.47 \\ & (25.4 \times 11.9) \end{aligned}$	\#8-32	$\begin{aligned} & 1.375 \\ & (34.9) \end{aligned}$
CSC-26B24-E06-E06	$\begin{aligned} & 80 \\ & (9.04) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & 2.10 \\ & (53.3) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 1.34 \\ & (34.0) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (8.6) \end{aligned}$	NA	NA	NA
CSC-26B24-E08-E08	$\begin{aligned} & 80 \\ & (9.04) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & 2.10 \\ & (53.3) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 1.34 \\ & (34.0) \end{aligned}$	$\begin{aligned} & 0.50 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (8.6) \end{aligned}$	NA	NA	NA

PERFORMANCE										
Model	Static Torque Ths.-in. (Nm)	Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagement msec	Amature Disengagement msec	Armature Inertia Ibs.-in.-sec ${ }^{2}$	Rotor Inertia lbs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft.-lhs./min
CS-22	40 (4.52)	24/90	75/1059	8.5	12.0	32.0	33.4×10^{-5}	32.3×10^{-5}	1.1 (0.5)	1400
CSC-22	40 (4.52)	24/90	75/1059	8.5	12.0	32.0	33.1×10^{-5}	32.3×10^{-5}	1.1 (0.5)	1400
CS-26	80 (9.04)	24/90	65/893	9.5	15.0	35.0	80.0×10^{-5}	62.0×10^{-5}	1.4 (0.6)	2600
CSC-26	80 (9.04)	24/90	65/893	9.5	15.0	35.0	81.0×10^{-5}	62.0×10^{-5}	1.4 (0.6)	2600

*See "How to order" model numbering system on page 90 for clutches \& clutch couplings.
(-) denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Initial working air gap at installation shall be .006/.013.
- Static torque values above are burnished
- Customer shall maintain a loose pin fit through the antirotation tab to prevent pre-loading of bearings.
- Metric bores available
- Other voltages available upon request.

MCS Series

Metric Shaft-Mounted Clutches

Our metric line of clutches and brakes are designed to be used in true metric applications (dimensional). The MCS Series offers a wide selection of metric bores and metric standard keyways. The Form Fit and Function matches popular metric lines globally available and are drop-in replacements in most cases.
The MCS Series has superior performance at a fraction of the cost of our competition. These units are available for low, medium and high volumes.

- Torque: 5.5 to 500 Nm (49 to 4,425 lbs.-in.)
- Diameters: 63 to 280 mm (2.48 to 11.02 in.)
- Zero backlash design
- Static or dynamic engagement
- Simple installation
- Energy efficient
- Economic cost
- Available "as is" or custom
- RoHS compliant

Typical Applications

- Factory automation
- Robotics
- Material handling
- Automotive
- Office automation
- Aviation
- Mail sorters
- Servo systems
- Medical

How to Order

General Notes

- The air gap should be checked periodically to ensure proper operation.
- All friction faces must be kept free of grease and oil for proper operation.
- Consult factory for additional options.
- Actual starting and/or stopping times depend on application variables, manufacturing tolerances and friction material wear. Please consult factory for evaluation of actual use before applying specific values to your application.
- Flying leads are provided as standard, terminal style connection available upon request.
- Armature and rotor bore dimensions are minimums, with tolerance generally $.001 / .002$ larger to accommodate varying environmental conditions.
- Coil of 24 volts are provided as standard, other coil voltages are available upon request.

MCS-26, 30, 40, 50, 60, 80 \& 100 Metric Clutches

Dimensions \& Specifications

DIMENSIONS														
												Mounti	Holes	
Model	Static Torque Nm (lbs.in.)	A: OD mm (in.)	B: OAL mm (in.)	C: Bore mm (in.)	D: K'way Height mm (in.)	E: K'way Width mm (in.)	F: Tab Height mm (in.)	G: Slot mm (in.)	H: Tab Width mm (in.)	J: Slot Width mm (in.)	K: Tab Thickness mm (in.)	N:Dia Holes (3) mm (in.)	$\begin{aligned} & \text { P: BC } \\ & \mathrm{mm}(\mathrm{in} .) \end{aligned}$	R: Dia mm(in.)
MCS-26U24-M12	$\begin{aligned} & 5.5 \\ & (48.68) \end{aligned}$	$\begin{aligned} & 67.5 \\ & (2.657) \end{aligned}$	$\begin{aligned} & 31.1 \\ & \text { (1.224) } \end{aligned}$	$\begin{aligned} & 12 \\ & (0.472) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (0.071) \end{aligned}$	$\begin{aligned} & 4 \\ & (0.157) \end{aligned}$	$\begin{aligned} & 49.5 \\ & (1.949) \end{aligned}$	$\begin{aligned} & 42.75 \\ & (1.683) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.472) \end{aligned}$	$\begin{aligned} & 4.5 \\ & (0.177) \end{aligned}$	$\begin{aligned} & 2 \\ & (0.079) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (0.122) \end{aligned}$	$\begin{aligned} & 46 \\ & (1.811) \end{aligned}$	$\begin{aligned} & 34.5 \\ & (1.358) \end{aligned}$
MCS-26U24-M15	$\begin{aligned} & 5.5 \\ & (48.68) \end{aligned}$	$\begin{aligned} & 67.5 \\ & (2.657) \end{aligned}$	$\begin{aligned} & 31.1 \\ & (1.224) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.591) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.091) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.197) \end{aligned}$	$\begin{aligned} & 49.5 \\ & (1.949) \end{aligned}$	$\begin{aligned} & 42.75 \\ & (1.683) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.472) \end{aligned}$	$\begin{aligned} & 4.5 \\ & (0.177) \end{aligned}$	$\begin{aligned} & 2 \\ & (0.079) \end{aligned}$	$\begin{aligned} & 3.1 \\ & (0.122) \end{aligned}$	$\begin{aligned} & 46 \\ & (1.811) \end{aligned}$	$\begin{aligned} & 34.5 \\ & (1.358) \end{aligned}$
MCS-30U24-M15	$\begin{aligned} & 11 \\ & (97.35) \end{aligned}$	$\begin{aligned} & 85 \\ & (3.346) \end{aligned}$	$\begin{aligned} & 34.2 \\ & (1.346) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.591) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.091) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.197) \end{aligned}$	$\begin{aligned} & 63.5 \\ & (2.500) \end{aligned}$	$\begin{aligned} & 55 \\ & (2.165) \end{aligned}$	$\begin{aligned} & 14 \\ & (0.551) \end{aligned}$	$\begin{aligned} & 5.5 \\ & (0.217) \end{aligned}$	$\begin{aligned} & 2 \\ & (0.079) \end{aligned}$	4.1 (0.161)	$\begin{aligned} & 60 \\ & (2.362) \end{aligned}$	$\begin{aligned} & 41.5 \\ & (1.634) \end{aligned}$
MCS-40U24-M20	$\begin{aligned} & 22 \\ & (194.70) \end{aligned}$	$\begin{aligned} & 106 \\ & (4.173) \end{aligned}$	$\begin{aligned} & 40 \\ & (1.575) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.787) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.091) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.197) \end{aligned}$	$\begin{aligned} & 72.5 \\ & (2.854) \end{aligned}$	$\begin{aligned} & 61.75 \\ & (2.431) \end{aligned}$	$\begin{aligned} & 16 \\ & (0.630) \end{aligned}$	$\begin{aligned} & 6.5 \\ & (0.256) \end{aligned}$	$\begin{aligned} & 2 \\ & (0.079) \end{aligned}$	$\begin{aligned} & 5.1 \\ & (0.201) \end{aligned}$	$\begin{aligned} & 76 \\ & (2.992) \end{aligned}$	$\begin{aligned} & 52 \\ & (2.047) \end{aligned}$
MCS-50U24-M25	$\begin{aligned} & 45 \\ & (398.25) \end{aligned}$	$\begin{aligned} & 133 \\ & (5.236) \end{aligned}$	$\begin{aligned} & 45 \\ & (1.772) \end{aligned}$	$\begin{aligned} & 25 \\ & (0.984) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.130) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.276) \end{aligned}$	$\begin{aligned} & 85 \\ & (3.346) \end{aligned}$	$\begin{aligned} & 76.3 \\ & (3.004) \end{aligned}$	$\begin{aligned} & 16 \\ & (0.630) \end{aligned}$	$\begin{aligned} & 6.5 \\ & (0.256) \end{aligned}$	$\begin{aligned} & 2 \\ & (0.079) \end{aligned}$	$\begin{aligned} & 6.1 \\ & (0.240) \end{aligned}$	$\begin{aligned} & 95 \\ & (3.740) \end{aligned}$	$\begin{aligned} & 62 \\ & (2.441) \end{aligned}$
MCS-60U24-M30	90 (796.50)	$\begin{aligned} & 169 \\ & (6.654) \end{aligned}$	$\begin{aligned} & 52.7 \\ & (2.075) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.181) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.130) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.276) \end{aligned}$	$\begin{aligned} & 112 \\ & (4.409) \end{aligned}$	$\begin{aligned} & 98.4 \\ & (3.874) \end{aligned}$	$\begin{aligned} & 25 \\ & (0.984) \end{aligned}$	$\begin{aligned} & 8.5 \\ & (0.335) \end{aligned}$	$\begin{aligned} & 3 \\ & (0.118) \end{aligned}$	$\begin{aligned} & 8.1 \\ & (0.319) \end{aligned}$	$\begin{aligned} & 120 \\ & (4.724) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.150) \end{aligned}$
MCS-80U24-M40	$\begin{aligned} & 200 \\ & (1770) \end{aligned}$	$\begin{aligned} & 220 \\ & (8.661) \end{aligned}$	$\begin{aligned} & 78 \\ & (3.071) \end{aligned}$	$\begin{aligned} & 40 \\ & (1.575) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (0.138) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.394) \end{aligned}$	$\begin{aligned} & 128 \\ & (5.039) \end{aligned}$	$\begin{aligned} & 129 \\ & (5.079) \end{aligned}$	$\begin{aligned} & 25 \\ & (0.984) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.394) \end{aligned}$	$\begin{aligned} & 3 \\ & (0.118) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (0.118) \end{aligned}$	$\begin{aligned} & 158 \\ & (6.220) \end{aligned}$	$\begin{aligned} & 99.5 \\ & (3.917) \end{aligned}$
MCS-100U24-M50	$\begin{aligned} & 400 \\ & (3540) \end{aligned}$	$\begin{aligned} & 280 \\ & (11.024) \end{aligned}$	$\begin{aligned} & 93 \\ & (3.661) \end{aligned}$	$\begin{aligned} & 50 \\ & (1.969) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (0.138) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.472) \end{aligned}$	$\begin{aligned} & 172.5 \\ & (6.791) \end{aligned}$	$\begin{aligned} & 162 \\ & (6.378) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.181) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.394) \end{aligned}$	$\begin{aligned} & 3 \\ & (0.118) \end{aligned}$	$\begin{aligned} & 6.0 \\ & (0.236) \end{aligned}$	$\begin{aligned} & 120 \\ & (4.724) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.937) \end{aligned}$

PERFORMANCE

Model	Static Torque* Nm (lbs.- in.)	Coil Voltage VDC	Resistance Ohms nom	Power Watts max	Armature Engagement msec	Armature Disengage msec	Armature Inertia kgcm^{2} (llbs.-in.-sec²)	Rotor Inertia $\mathrm{kgem}{ }^{2}$ (lhs.-in.-sec ${ }^{2}$)	Weight kg (lbs.)	Energy Dissipation ft.-lhs./min	Recomm. Air Gap at Install mm (in.)
MCS-26U24-M15	5.5 (48.68)	24	53	11	10	12	$0.346\left(3.06 \times 10^{-4}\right)$	$0.834\left(7.38 \times 10^{-4}\right)$	1 (2.205)	2600	0.2 (0.008)
MCS-30U24-M15	11 (97.35)	24	38.4	15	9	20	$1.098\left(9.72 \times 10^{-4}\right)$	$2.215\left(1.96 \times 10^{-3}\right)$	1.5 (3.307)	2900	0.2 (0.008)
MCS-40U24-M20	22 (194.7)	24	28.9	20	14	60	$3.22\left(2.85 \times 10^{-3}\right)$	$6.739\left(5.96 \times 10^{-3}\right)$	2.5 (5.512)	5800	0.2 (0.008)
MCS-50U24-M25	$\begin{aligned} & 45 \\ & (398.25) \end{aligned}$	24	25	25	20	68	$10.445\left(9.24 \times 10^{-3}\right)$	$19.149\left(1.69 \times 10^{-2}\right)$	4 (8.818)	9000	0.3 (0.012)
MCS-60U24-M30	90 (796.5)	24	16.46	35	18	148	$38.109\left(3.37 \times 10^{-2}\right)$	$56.765\left(5.02 \times 10^{-2}\right)$	7 (15.432)	10000	0.3 (0.012)
MCS-80U24-M40	200 (1770)	24	12.8	45	27	142	$120.827\left(1.07 \times 10^{-1}\right)$	$145.953\left(1.29 \times 10^{-1}\right)$	12 (26.455)	50000	0.4 (0.016)
MCS-100U24-M50	400 (3540)	24	9.6	60	90	120	$357.462\left(3.16 \times 10^{-1}\right)$	$539.803\left(4.78 \times 10^{-1}\right)$	20 (44.092)	70000	0.4 (0.016)

$(-)$ denotes English equivalents. Specifications subject to change without notice.
*Unburnished
**Consult factory

BF Series

Power-on Brakes

Electromagnetic power-on brakes provide an efficient, switchable means of stopping and/or holding the load. While the field (electromagnet) assembly is fixed and prevented from rotating by a flange, the armature assembly is secured to the shaft. When the coil is energized, the armature engages the friction surface of the fixed field (electromagnet) assembly, thus stopping and/or holding the load.

- Torque: 5 lb -in to 80 lbs .-in. (0.56 to 9.04 Nm)
- Diameter: 1.25 to 2.26 in. (31.8 to 66.8 mm)
- Static or dynamic engagement
- Simple installation
- Economical cost
- Energy efficient

Typical Applications

- Robotics
- Medical equipment
- Actuators
- Motor brakes
- Postal handling equipment
- Packaging

How to Order

Insulation Class:
BF: Class B $\left(130^{\circ} \mathrm{C}\right)$

* Other voltages available upon request

General Notes

- Actual starting and/or stopping times depend on application variables, manufacturing tolerances and friction material wear. Please consult factory for evaluation of actual use before applying specific values to your application.
- Consult factory for additional options.
- Working air gap should be checked periodically to ensure proper operation. If it exceeds maximum recommended dimensions, the clutch or brake may not function properly.
- All friction faces must be kept free of grease and oil for proper operation.
- Flying leads are provided as standard, terminal style connection available upon request
- Coil of $24 \& 90$ volts are provided as standard, other coil voltages are available upon request.

BF Series

Power-on Brakes

istribuidor

BF-11 Brakes

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.

DIMENSIONS													
Mode**	Static Torque lbs.-in. (Nm)	A: OD in. (mm)	B: OAL in. (mm)	C: Hub ID 0 in. (mm)	D: K'way Height in. (mm)	E: K'way Width in. (mm)		Mtg ot \varnothing (mm)		H: Mry Width in. (mm)	J: (4) Mtg Holes 0 in. (mm)	K: Mtg Plt Thickness in. (mm)	L. Mtg Hole BC \varnothing in. (mm)
BF-11B24-E04	$\begin{aligned} & 5.0 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 1.14 \\ & (29.0) \end{aligned}$	$\begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$\begin{aligned} & .286 \\ & (7.3) \end{aligned}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 1.49 \\ & \text { (38.) } \end{aligned}$		$\begin{aligned} & 0.53 \\ & (1.35) \end{aligned}$	$\begin{aligned} & 1.17 \\ & (29.7) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 1.31 \\ & (33.3) \end{aligned}$
BF-11B24-E05	$\begin{aligned} & 5.0 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 1.14 \\ & (29.0) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.49 \\ & (38.0 \end{aligned}$		$\begin{aligned} & 0.53 \\ & (1.35) \end{aligned}$	$\begin{aligned} & 1.17 \\ & (29.7) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 1.31 \\ & (33.3) \end{aligned}$
						PERFORMA	NCE						
Model	Static Torque Ths.-in. (Nm)		Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagem msec			ement	nature rtia $-\mathrm{in}^{2}-\mathrm{sec}^{2}$	Rotor Inertia lhs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft-Ibs./min
BF-11	5.0 (0.56)		24/90	128/1800	5.0	5.0		18.0	3.4	$\times 10^{-5}$	NA	0.2 (0.1)	175

*See "How to order" model numbering system on page 97 for BF power-on brakes.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Customer shall maintain the perpendicularity of the case assembly mounting surface with respect to the shaft within 003 T.I.R. at the diameter of the bolt circle.
- Static torque values above are burnished.
- Customer shall maintain concentricity of case assembly mounting pilot with respect to the shaft within .003 T.I.R.
- Initial working air gap at installation shall be .004/009.
- Other voltages available upon request.
- Brake coupling armature assembly is secured to shaft by (1) set screw and key.
- Metric bores available

BF-15, 17 Brakes

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.

DIMENSIONS												
Model*	Static Torque lbs.-in. (Nm)	$\begin{aligned} & \text { A: OD } \\ & \text { in. }(\mathrm{mm}) \end{aligned}$	B: OAL in. (mm)	C: Hub ID 0 in. (mm)	D: K'way Height in. (mm)	E: K'way Width in. (mm)	F: Mtg Pilot 0 in. (mm)	G: Case ID 0 in. (mm)	$\mathrm{H}_{\square}: \mathrm{Mtg}$ Width in. (mm)	J: (4) Mitg Holes 0 in. (mm)	K: Mtg Plt Thick. in. (mm)	L: Mtg Hole BC D in. (mm)
BF-15B24-E04	$\begin{aligned} & 10 \\ & \hline(1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.38 \\ & (35.1) \end{aligned}$	$\begin{aligned} & .250 \\ & .(6.4) \end{aligned}$	$\begin{aligned} & .286 \\ & (7.3) \end{aligned}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 1.999 \\ & (50.8) \end{aligned}$	$\begin{aligned} & \hline 0.68 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 1.56 \\ & (39.6) \end{aligned}$	$\begin{aligned} & .156 \\ & \hline(4.0) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$
BF-15B24-E05	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.38 \\ & (35.1) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.999 \\ & (50.8) \end{aligned}$	$\begin{aligned} & 0.68 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 1.56 \\ & (39.6) \end{aligned}$	$\begin{array}{r} 156 \\ (4.0) \end{array}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$
BF-15B24-E06	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (38.9) \end{aligned}$	$\begin{aligned} & 1.38 \\ & (35.1) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	NA	NA	$\begin{aligned} & 1.999 \\ & (50.8) \end{aligned}$	$\begin{aligned} & 0.68 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 1.56 \\ & (39.6) \end{aligned}$	$\begin{aligned} & .156 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$
BF-17B24-E04	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.27 \\ & (32.3) \end{aligned}$	$\begin{array}{r} .250 \\ (6.4) \end{array}$	$\begin{array}{r} .286 \\ (7.3) \end{array}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 2.436 \\ & (61.9) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 1.82 \\ & (46.2) \end{aligned}$	$\begin{aligned} & .187 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 2.13 \\ & (54.1) \end{aligned}$
BF-17B24-E05	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.27 \\ & (32.3) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & (9.2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 2.436 \\ & (61.9) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 1.82 \\ & (46.2) \end{aligned}$	$\begin{array}{r} 187 \\ (4.7) \end{array}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 2.13 \\ & (54.1) \end{aligned}$
BF-17B24-E06	$\begin{aligned} & 15 \\ & (1.69) \end{aligned}$	$\begin{aligned} & 1.78 \\ & (45.2) \end{aligned}$	$\begin{aligned} & 1.27 \\ & (32.3) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 2.436 \\ & (61.9) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 1.82 \\ & (46.2) \end{aligned}$	$\begin{array}{r} 187 \\ (4.7) \end{array}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 2.13 \\ & (54.1) \end{aligned}$

PERFORMANCE										
Model	Static Torque Ths.-in. (Nm)	Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagement msec	Armature Disengagement msec	Armature Inertia Ths.-in.-sec²	Rotor Inertia Ibs.-in.-sec²	Weight libs. (kg)	Energy Dissipation ft.-llos./min
BF-15	10.0 (1.13)	24/90	130/1800	5.0	8.0	22.0	6.6×10^{-5}	NA	0.4 (0.2)	295
BF-17	15.0 (1.69)	24/90	108/1518	6.0	10.0	27.0	8.1×10^{-5}	NA	0.5 (0.3)	420

*See "How to order" model numbering system on page 90 for clutches \& clutch couplings.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Customer shall maintain the perpendicularity of the case assembly mounting surface with respect to the shaft within .003 T.I.R. at the diameter of the bolt circle.
- Static torque values above are burnished.
- Customer shall maintain concentricity of case assembly mounting pilot with respect to the shaft within . 003 T.I.R.
- Initial working air gap at installation shall be .006/.013.
- Other voltages available upon request.

ISTRIBUIDOR MEX(55)53632331 MTY (81)8354 1018

BF-22 \& 26 Brakes

Dimensions \& Specifications

Dimensions (mm)

Mounting requirements see page 128.

DIMENSIONS													
Model*	Static Torque lbs.-in. (Nm)	$\begin{aligned} & \text { A: OD } \\ & \text { in. }(\mathrm{mm}) \end{aligned}$	B: OAL in. (mm)	C: Hub ID 0 in. (mm)	D: K'way Height in. (mm)	E: K'w Width in. (mm)		F: Mtg Pilot 0 in. (mm)	G: Case ID D in. (mm)	HaMtg Width in. (mm)	J: (4) Mtg Holes ø in. (mm)	K: Mtg Plt Thick. in. (mm)	L: Mtg Hole BC \varnothing in. (mm)
BF-22B24-E05	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 1.74 \\ & (44.2) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & .364 \\ & .9 .2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$		$\begin{aligned} & 2.873 \\ & (73.0) \end{aligned}$	$\begin{aligned} & 0.88 \\ & (22.4) \end{aligned}$	$\begin{aligned} & 2.33 \\ & (52.9) \end{aligned}$	$\begin{aligned} & .166 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 2.50 \\ & (63.5) \end{aligned}$
BF-22B24-E06	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 1.74 \\ & (44.2) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$		$\begin{aligned} & 2.873 \\ & (73.0) \end{aligned}$	$\begin{aligned} & 0.88 \\ & (22.4) \end{aligned}$	$\begin{aligned} & 2.33 \\ & (52.9) \end{aligned}$	$\begin{array}{r} 166 \\ (4.2) \end{array}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 2.50 \\ & (63.5) \end{aligned}$
BF-22B24-E08	$\begin{aligned} & 40 \\ & (4.52) \end{aligned}$	$\begin{aligned} & 2.26 \\ & (57.4) \end{aligned}$	$\begin{aligned} & 1.74 \\ & (44.2) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$		$\begin{aligned} & 2.873 \\ & (73.0) \end{aligned}$	$\begin{aligned} & 0.88 \\ & (22.4) \end{aligned}$	$\begin{aligned} & 2.33 \\ & (52.9) \end{aligned}$	$\begin{aligned} & .166 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 2.50 \\ & \text { (63.5) } \end{aligned}$
BF-26B24-E06	$\begin{aligned} & 80 \\ & (9.04) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & 1.84 \\ & (46.7) \end{aligned}$	$\begin{aligned} & .375 \\ & .39 .5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$		$\begin{aligned} & 3.499 \\ & (88.9) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27.0) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & .187 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 3.13 \\ & (79.5) \end{aligned}$
BF-26B24-E08	$\begin{aligned} & 80 \\ & (9.04) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & 1.84 \\ & (46.7) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{array}{r} .125 \\ (3.2) \end{array}$		$\begin{aligned} & 3.499 \\ & (88.9) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27.0) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{array}{r} .187 \\ (4.7) \end{array}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 3.13 \\ & (79.5) \end{aligned}$
BF-26B24-E10	$\begin{aligned} & 80 \\ & (9.04) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{aligned} & 1.84 \\ & (46.7) \end{aligned}$	$\begin{aligned} & .625 \\ & (15.9) \end{aligned}$	$\begin{aligned} & .709 \\ & (18.0) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$		$\begin{aligned} & 3.499 \\ & (88.9) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27.0) \end{aligned}$	$\begin{aligned} & 2.63 \\ & (66.8) \end{aligned}$	$\begin{array}{r} .187 \\ (4.7) \end{array}$	$\begin{aligned} & 0.06 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 3.13 \\ & (79.5) \end{aligned}$
PERFORMANCE													
Model	Static Torque Ths.-in. (Nm)	Coil Voltage VDC	Resista Ohms nom.		Armature Engagement msec		Amature Disengagement msec		Armature Inertia lhs.-in.-sec ${ }^{2}$	Rotor Inertia lbs.-in.-sec ${ }^{2}$		Weight Ibs. (kg)	Energy Dissipation ft.-lhs./min
BF-22	40.0 (4.52)	24/90	75/1048	8.5	12.0		32.0		33.1×10^{-5}	NA		0.9 (0.4)	1400
BF-26	80.0 (9.04)	24/90	66/937	9.5	15.0		35.0		81.0×10^{-5}	NA		1.2 (0.5)	2600

*See "How to order" model numbering system on page 90 for clutches \& clutch couplings.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Customer shall maintain the perpendicularity of the case assembly mounting surface with respect to the shaft within 003 T.I.R. at the diameter of the bolt circle.
- Static torque values above are burnished.
- Customer shall maintain concentricity of case assembly mounting pilot with respect to the shaft within .003 T.I.R.
- Initial working air gap at installation shall be .008/.018.
- Other voltages available upon request.
- Brake coupling armature assembly is secured to shaft by (2) set screws and key.
- Metric bores available

MBF Series

Metric Power-on Brakes

Our metric line of clutches and brakes are designed to be used in true metric applications (dimensional). The MBF Series offers a wide selection of metric bores and metric standard keyways. The Form Fit and Function matches popular metric lines globally available and are drop-in replacements in most cases.
The MBF Series has superior performance at a fraction of the cost of our competition. These units are available for low, medium and high volumes.

- Torque: 5.5 to 500 Nm (49 to 4,425 lbs.-in.)
- Diameters: 63 to 280 mm (2.48 to 11.02 in.)
- Zero backlash design
- Static or dynamic engagement
- Simple installation
- Energy efficient
- Economic cost
- Available "as is" or custom
- RoHS compliant

Typical Applications

- Factory automation
- Robotics
- Material handling
- Automotive
- Office automation
- Aviation
- Mail sorters
- Servo systems
- Medical

How to Order

** Long or Short Hub Length available only on MBF Series Brakes

General Notes

- The air gap should be checked periodically to ensure proper operation.
- All friction faces must be kept free of grease and oil for proper operation.
- Consult factory for additional options.
- Actual starting and/or stopping times depend on application variables, manufacturing tolerances and friction material wear. Please consult factory for evaluation of actual use before applying specific values to your application.
- Flying leads are provided as standard, terminal style connection available upon request.
- Armature and rotor bore dimensions are minimums, with tolerance generally $.001 / .002$ larger to accommodate varying environmental conditions.
- Coil of 24 volts are provided as standard, other coil voltages are available upon request.

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018

Dimensions \& Specifications

Dimensions mm (inches)

DIMENSIONS												
Model	Static Torque Nm (lbs.-in.)	$\begin{aligned} & \text { A: OD } \\ & \text { mm (in.) } \end{aligned}$	B: OAL mm (in.)	C: Bore mm (in.)	D: K'way Height mm (in.)	E: K'way Width mm (in.)	F: Flange OD mm (in.)	G: Gase ID mm (in.)	H: Gase Height mm (in.)	J: Mtg Holes (4) mm (in.)	K: Mtg Pla Thickness mm (in.)	L:Mtg Hole BC mm (in)
MBF-26U24-M12-S	$\begin{aligned} & 5.5 \\ & (48.68) \end{aligned}$	$\begin{aligned} & 63 \\ & (2.48) \end{aligned}$	$\begin{aligned} & 25.55 \\ & (1.01) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 4 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 35 \\ & (1.38) \end{aligned}$	$\begin{aligned} & 18 \\ & (0.71) \end{aligned}$	5 (0.20)	2 (0.08)	$\begin{aligned} & 72 \\ & (2.83) \end{aligned}$
MBF-26U24-M15-S	$\begin{aligned} & 5.5 \\ & (48.68) \end{aligned}$	$\begin{aligned} & 63 \\ & (2.48) \end{aligned}$	$\begin{aligned} & 25.55 \\ & (1.01) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 35 \\ & (1.38) \end{aligned}$	$\begin{aligned} & 18 \\ & (0.71) \end{aligned}$	5 (0.20)	2 (0.08)	$\begin{aligned} & 72 \\ & (2.83) \end{aligned}$
MBF-30U24-M15-S	$\begin{aligned} & 11 \\ & (97.35) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 28.8 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 42 \\ & (1.65) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	6 (0.24)	2.5 (0.10)	$\begin{aligned} & 90 \\ & (3.54) \end{aligned}$
MBF-30U24-M20-S	$\begin{aligned} & 11 \\ & (97.35) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 28.8 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 42 \\ & (1.65) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	6 (0.24)	2.5 (0.10)	$\begin{aligned} & 90 \\ & (3.54) \end{aligned}$
MBF-40U24-M20-S	$\begin{aligned} & 22 \\ & (194.70) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 32.9 \\ & (1.30) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 52 \\ & (2.05) \end{aligned}$	$\begin{aligned} & 22 \\ & (0.87) \end{aligned}$	7 (0.28)	3 (0.12)	$\begin{aligned} & 112 \\ & (4.41) \end{aligned}$
MBF-40U24-M25-S	$\begin{aligned} & 22 \\ & (194.70) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 32.9 \\ & (1.30) \end{aligned}$	$\begin{aligned} & 25 \\ & (0.98) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 52 \\ & (2.05) \end{aligned}$	$\begin{aligned} & 22 \\ & (0.87) \end{aligned}$	7 (0.28)	3 (0.12)	$\begin{aligned} & 112 \\ & (4.41) \end{aligned}$
MBF-50U24-M25-S	$\begin{aligned} & 45 \\ & (398.25) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 37.3 \\ & (1.47) \end{aligned}$	$\begin{aligned} & 25 \\ & (0.98) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 150 \\ & (5.91) \end{aligned}$	$\begin{aligned} & 62 \\ & (2.44) \end{aligned}$	$\begin{aligned} & 24 \\ & (0.94) \end{aligned}$	7 (0.28)	3.5 (0.14)	$\begin{aligned} & 137 \\ & (5.39) \end{aligned}$
MBF-50U24-M30-S	$\begin{aligned} & 45 \\ & (398.25) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 37.3 \\ & (1.47) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 150 \\ & (5.91) \end{aligned}$	$\begin{aligned} & 62 \\ & (2.44) \end{aligned}$	$\begin{aligned} & 24 \\ & (0.94) \end{aligned}$	7 (0.28)	3.5 (0.14)	$\begin{aligned} & 137 \\ & (5.39) \end{aligned}$
MBF-60U24-M30-S	$\begin{aligned} & 90 \\ & (796.50) \end{aligned}$	$\begin{aligned} & 160 \\ & (6.30) \end{aligned}$	$\begin{aligned} & 42.5 \\ & (1.67) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 190 \\ & (7.48) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 26 \\ & (1.02) \end{aligned}$	9.5 (0.37)	4 (0.16)	$\begin{aligned} & 175 \\ & (6.89) \end{aligned}$
MBF-60U24-M40-S	$\begin{aligned} & 90 \\ & (796.50) \end{aligned}$	$\begin{aligned} & 160 \\ & (6.30) \end{aligned}$	$\begin{aligned} & 42.5 \\ & (1.67) \end{aligned}$	$\begin{aligned} & 40 \\ & (1.57) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 190 \\ & (7.48) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 26 \\ & (1.02) \end{aligned}$	9.5 (0.37)	4 (0.16)	$\begin{aligned} & 175 \\ & (6.89) \end{aligned}$
MBF-80U24-M40-S	$\begin{aligned} & 175 \\ & (1548.75) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.87) \end{aligned}$	$\begin{aligned} & 50.5 \\ & (1.99) \end{aligned}$	$\begin{aligned} & 40 \\ & (1.57) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 230 \\ & (9.06) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	9.5 (0.37)	5 (0.20)	$\begin{aligned} & 215 \\ & (8.46) \end{aligned}$
MBF-80U24-M50-S	$\begin{aligned} & 175 \\ & (1548.75) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.87) \end{aligned}$	$\begin{aligned} & 50.5 \\ & (1.99) \end{aligned}$	$\begin{aligned} & 50 \\ & (1.97) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 230 \\ & (9.06) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	9.5 (0.37)	5 (0.20)	$\begin{aligned} & 215 \\ & (8.46) \end{aligned}$
MBF-100U24-M50-S	$\begin{aligned} & 350 \\ & (3097.50) \end{aligned}$	$\begin{aligned} & 250 \\ & (9.84) \end{aligned}$	$\begin{aligned} & 59.6 \\ & (2.35) \end{aligned}$	$\begin{aligned} & 50 \\ & (1.97) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 290 \\ & (11.42) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 35.1 \\ & (1.38) \end{aligned}$	11.5 (0.45)	6 (0.24)	$\begin{aligned} & 270 \\ & (10.63) \end{aligned}$
MBF-100U24-M60-S	$\begin{aligned} & 350 \\ & (3097.50) \end{aligned}$	$\begin{aligned} & 250 \\ & (9.84) \end{aligned}$	$\begin{aligned} & 59.6 \\ & (2.35) \end{aligned}$	$\begin{aligned} & 60 \\ & (2.36) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 290 \\ & (11.42) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 35.1 \\ & (1.38) \end{aligned}$	11.5 (0.45)	6 (0.24)	$\begin{aligned} & 270 \\ & (10.63) \end{aligned}$

PERFORMANCE										
Model	Static Torque* Nm (llbs.-in.)	Coil Voltage VDC	Resistance Ohms nom	Power Watts max	Armature Engagement msec	Armature Disengage msec	Armature Inertia kgcm^{2} (lbs.-in.-sec${ }^{2}$)	Weight kg (lbs.)	Energy Dissipation ft.-lhs./min	Recomm. Air Gap at Install mm (in.)
MBF-26U24-xxx-S	5.5 (48.68)	24	52.2	11	5	20	$0.476\left(4.21 \times 10^{-4}\right)$	0.32 (0.705)	2600	0.2 (0.008)
MBF-30U24-xxx-S	11 (97.35)	24	38.1	15	7	18	$1.442\left(1.28 \times 10^{-3}\right)$	0.58 (1.279)	2900	0.2 (0.008)
MBF-40U24-xxx-S	22 (194.7)	24	28.92	20	6	37	$4.255\left(3.77 \times 10^{-3}\right)$	1.07 (2.359)	5800	0.2 (0.008)
MBF-50U24-xxx-S	45 (398.25)	24	23.03	25	14	55	13.41 (1.19 $\times 10^{-2}$)	1.97 (4.343)	9000	0.3 (0.012)
MBF-60U24-xxx-S	90 (796.5)	24	16.44	35	15	44	$46.655\left(4.13 \times 10^{-2}\right)$	3.45 (7.606)	10000	0.3 (0.012)
MBF-80U24-xxx-S	200 (1770)	24	12.8	45	16	165	$145.819\left(1.29 \times 10^{-1}\right)$	7.1 (15.653)	50000	0.5 (0.020)
MBF-100U24-xxx-S	400 (3540)	24	10.8	60	37	205	$387.284\left(3.43 \times 10^{-1}\right)$	12.2 (26.896)	70000	0.5 (0.020)

(-) denotes English equivalents. Specifications subject to change without notice. *Unburnished **Consult factory

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018

MBF-26, 30, 40, 50, 60, 80 \& 100-L (Long) Metric Brakes

Dimensions \& Specifications

Dimensions mm (inches)

DIMENSIONS													
Model	Static Torque Nm (lbs.in.)	$\begin{aligned} & \text { A: OD } \\ & m m \text { (in.) } \end{aligned}$	B: OAL mm (in.)	C: Bore mm (in.)	D:Kiway Height mm (in.)	E:Kway Width mm (in.)	F: Flange OD mm (in.)	G: Case ID mm (in.)	H: Case Height mm (in.)	J: Mtg Holes (4) mm (in.)	K: Mitg Pla Thickness mm (in.)	L:Mtg Hole BC mm (in.)	M:Hub Dia mm (in.)
MBF-26U24-M12-L	$\begin{aligned} & 5.5 \\ & (48.68) \end{aligned}$	$\begin{aligned} & 63 \\ & (2.48) \end{aligned}$	$\begin{aligned} & 37 \\ & (1.46) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 4 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 35 \\ & (1.38) \end{aligned}$	$\begin{aligned} & 18 \\ & (0.71) \end{aligned}$	$5(0.20)$	$2(0.08)$	$\begin{aligned} & 72 \\ & (2.83) \end{aligned}$	$\begin{aligned} & 27.5 \\ & (1.08) \end{aligned}$
MBF-26U24-M15-L	$\begin{aligned} & 5.5 \\ & (48.68) \end{aligned}$	$\begin{aligned} & 63 \\ & (2.48) \end{aligned}$	$\begin{aligned} & 37 \\ & (1.46) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 35 \\ & (1.38) \end{aligned}$	$\begin{aligned} & 18 \\ & (0.71) \end{aligned}$	5 (0.20)	2 (0.08)	$\begin{aligned} & 72 \\ & (2.83) \end{aligned}$	$\begin{aligned} & 27.5 \\ & (1.08) \end{aligned}$
MBF-30U24-M15-L	$\begin{aligned} & 11 \\ & \text { (97.35) } \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 44 \\ & (1.76) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 42 \\ & (1.65) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	6 (0.24)	2.5 (0.10)	$\begin{aligned} & 90 \\ & (3.54) \end{aligned}$	$\begin{aligned} & 31 \\ & (1.22) \end{aligned}$
MBF-30U24-M20-L	$\begin{aligned} & 11 \\ & (97.35) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 44 \\ & (1.76) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 42 \\ & (1.65) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	6 (0.24)	2.5 (0.10)	$\begin{aligned} & 90 \\ & (3.54) \end{aligned}$	$\begin{aligned} & 31 \\ & (1.22) \end{aligned}$
MBF-40U24-M20-L	$\begin{aligned} & 22 \\ & (194.70) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 53 \\ & (2.09) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 52 \\ & (2.05) \end{aligned}$	$\begin{aligned} & 22 \\ & (0.87) \end{aligned}$	7 (0.28)	3 (0.12)	$\begin{aligned} & 112 \\ & (4.41) \end{aligned}$	$\begin{aligned} & 41 \\ & (1.61) \end{aligned}$
MBF-40U24-M25-L	$\begin{aligned} & 22 \\ & (194.70) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 53 \\ & (2.09) \end{aligned}$	$\begin{aligned} & 25 \\ & (0.98) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 52 \\ & (2.05) \end{aligned}$	$\begin{aligned} & 22 \\ & (0.87) \end{aligned}$	7 (0.28)	3 (0.12)	$\begin{aligned} & 112 \\ & (4.41) \end{aligned}$	$\begin{aligned} & 41 \\ & (1.61) \end{aligned}$
MBF-50U24-M25-L	$\begin{aligned} & 45 \\ & (398.25) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 61.3 \\ & (2.41) \end{aligned}$	$\begin{aligned} & 25 \\ & (0.98) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 150 \\ & (5.91) \end{aligned}$	$\begin{aligned} & 62 \\ & (2.44) \end{aligned}$	$\begin{aligned} & 24 \\ & (0.94) \end{aligned}$	7 (0.28)	3.5 (0.14)	$\begin{aligned} & 137 \\ & (5.39) \end{aligned}$	$\begin{aligned} & 49 \\ & (1.93) \end{aligned}$
MBF-50U24-M30-L	$\begin{aligned} & 45 \\ & (398.25) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 61.3 \\ & (2.41) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 150 \\ & (5.91) \end{aligned}$	$\begin{aligned} & 62 \\ & (2.44) \end{aligned}$	$\begin{aligned} & 24 \\ & (0.94) \end{aligned}$	7 (0.28)	3.5 (0.14)	$\begin{aligned} & 137 \\ & (5.39) \end{aligned}$	$\begin{aligned} & 49 \\ & (1.93) \end{aligned}$
MBF-60U24-M30-L	$\begin{aligned} & 90 \\ & (796.50) \end{aligned}$	$\begin{aligned} & 160 \\ & (6.30) \end{aligned}$	$\begin{aligned} & 73.5 \\ & (2.89) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 190 \\ & (7.48) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 26 \\ & (1.02) \end{aligned}$	9.5 (0.37)	4 (0.16)	$\begin{aligned} & 175 \\ & (6.89) \end{aligned}$	$\begin{aligned} & 65 \\ & (2.56) \end{aligned}$
MBF-60U24-M40-L	90 (796.50)	$\begin{aligned} & 160 \\ & (6.30) \end{aligned}$	$\begin{aligned} & 73.5 \\ & (2.89) \end{aligned}$	$\begin{aligned} & 40 \\ & (1.57) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 190 \\ & (7.48) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 26 \\ & (1.02) \end{aligned}$	9.5 (0.37)	4 (0.16)	$\begin{aligned} & 175 \\ & (6.89) \end{aligned}$	$\begin{aligned} & 65 \\ & (2.56) \end{aligned}$
MBF-80U24-M40-L	$\begin{aligned} & 175 \\ & (1548.75) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.87) \end{aligned}$	$\begin{aligned} & 87.2 \\ & (3.43) \end{aligned}$	$\begin{aligned} & 40 \\ & (1.57) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 230 \\ & (9.06) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	9.5 (0.37)	5 (0.20)	$\begin{aligned} & 215 \\ & (8.46) \end{aligned}$	$\begin{aligned} & 83 \\ & (3.27) \end{aligned}$
MBF-80U24-M50-L	$\begin{aligned} & 175 \\ & (1548.75) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.87) \end{aligned}$	$\begin{aligned} & 87.2 \\ & (3.43) \end{aligned}$	$\begin{aligned} & 50 \\ & (1.97) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 230 \\ & (9.06) \end{aligned}$	$\begin{aligned} & 100 \\ & (3.94) \end{aligned}$	$\begin{aligned} & 30 \\ & (1.18) \end{aligned}$	9.5 (0.37)	$5(0.20)$	$\begin{aligned} & 215 \\ & (8.46) \end{aligned}$	$\begin{aligned} & 83 \\ & (3.27) \end{aligned}$
MBF-100U24-M50-L	$\begin{aligned} & 350 \\ & (3097.50) \end{aligned}$	$\begin{aligned} & 250 \\ & (9.84) \end{aligned}$	$\begin{aligned} & 102.6 \\ & (4.04) \end{aligned}$	$\begin{aligned} & 50 \\ & (1.97) \end{aligned}$	$\begin{aligned} & 3.8 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 290 \\ & (11.42) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 35.1 \\ & (1.38) \end{aligned}$	11.5 (0.45)	6 (0.24)	$\begin{aligned} & 270 \\ & (10.63) \end{aligned}$	$\begin{aligned} & 105 \\ & (4.13) \end{aligned}$
MBF-100U24-M60-L	$\begin{aligned} & 350 \\ & (3097.50) \end{aligned}$	$\begin{aligned} & 250 \\ & (9.84) \end{aligned}$	$\begin{aligned} & 102.6 \\ & (4.04) \end{aligned}$	$\begin{aligned} & 60 \\ & (2.36) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 290 \\ & (11.42) \end{aligned}$	$\begin{aligned} & 125 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 35.1 \\ & (1.38) \end{aligned}$	11.5 (0.45)	6 (0.24)	$\begin{aligned} & 270 \\ & (10.63) \end{aligned}$	$\begin{aligned} & 105 \\ & (4.13) \end{aligned}$

PERFORMANCE										
Model	Static Torque* Nm (llbs.-in.)	Coil Voltage VDC	Resistance Ohms nom	Power Watts max	Armature Engagement msec	Armature Disengage msec	Armature Inertia kgcm^{2} (lbs.-in.-sec²)	Weight kg (lbs.)	Energy Dissipation ft.-lls./min	Recomm. Air Gap at Install mm (in.)
MBF-26U24-xxx-L	5.5 (48.68)	24	52.2	11	5	20	$0.476\left(4.21 \times 10^{-4}\right)$	0.32 (0.705)	2600	0.2 (0.008)
MBF-30U24-xxx-L	11 (97.35)	24	38.1	15	7	18	$1.442\left(1.28 \times 10^{-3}\right)$	0.58 (1.279)	2900	0.2 (0.008)
MBF-40U24-xxx-L	22 (194.7)	24	28.92	20	6	37	$4.255\left(3.77 \times 10^{-3}\right)$	1.07 (2.359)	5800	0.2 (0.008)
MBF-50U24-xxx-L	45 (398.25)	24	23.03	25	14	55	13.41 (1.19 $\left.\times 10^{-2}\right)$	1.97 (4.343)	9000	0.3 (0.012)
MBF-60U24-xxx-L	90 (796.5)	24	16.44	35	15	44	$46.655\left(4.13 \times 10^{-2}\right)$	3.45 (7.606)	10000	0.3 (0.012)
MBF-80U24-xxx-L	200 (1770)	24	12.8	45	16	165	145.819 (1.29 $\times 10^{-1}$)	7.1 (15.653)	50000	0.5 (0.020)
MBF-100U24-xxx-L	400 (3540)	24	10.8	60	37	205	$387.284\left(3.43 \times 10^{-1}\right)$	12.2 (26.896)	70000	0.5 (0.020)

(-) denotes English equivalents. Specifications subject to change without notice. *Unburnished **Consult factory

SB / FSB Series

Power-off Brakes

Spring-set electromagnetic power-off brakes provide a safe, efficient means of stopping and/or holding a load in the absence of power. While the field (electromagnet) assembly is fixed and prevented from rotating, the rotor assembly is secured to the shaft. In the absence of power, the fixed and rotating components are engaged, thus stopping and/or holding the load. When the coil is energized, rotating components are disengaged, thus allowing the shaft to freely rotate.

- Torque: 1 to 1200 lbs.-in. (0.12 to 135 Nm)
- Diameter: 1.50 to 7.25 in. (38.1 to 184.2 mm)
- Static or dynamic engagement
- Simple installation
- Economical cost
- Energy efficient

Typical Applications

- Robotics
- Medical equipment
- Actuators
- Motor brakes
- Postal handling equipment
- Packaging

How to Order

General Notes

- Actual starting and/or stopping times depend on application variables, manufacturing tolerances and friction material wear. Please consult factory for evaluation of actual use before applying specific values to your application.
- Consult factory for additional options.
- Working air gap should be checked periodically to ensure proper operation. If it exceeds maximum recommended dimensions, the clutch or brake may not function properly.
- All friction faces must be kept free of grease and oil for proper operation.
- Flying leads are provided as standard, terminal style connection available upon request.
- Coil of $24 \& 90$ volts are provided as standard, other coil voltages are available upon request.

SB Series

Power-off Brakes

Heavy duty servo brakes are available for the most extreme environmental conditions. Please contact Thomson Customer Support for additional information.

General Notes

- Actual stopping times depend on application variables, manufacturing tolerances and friction material wear. Please consult factory for evaluation of actual use before applying specific values to your application.
- Consult factory for additional options.
- Working air gap should be checked periodically to ensure proper operation. If it exceeds maximum recommended dimensions, the clutch or brake may not function properly.
- All friction faces must be kept free of grease and oil for proper operation.
- Flying leads are provided as standard, terminal style connection available upon request.
- Coil of 24 \& 90 volts are provided as standard, other coil voltages are available upon request.

DISTRIBUIDOR MEX (55) 53632331 MTY (81) 83541018

SB-15, 17 \& 19 Brakes

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.
SB Model Shown

DIMENSIONS										
Model*	Static Torque Ibs.-in. (Nm)	A: OD in. (mm)	B1: OAL Short Hub in. (mm)	B2: 0AL Long Hub in. (mm)	C. Hub ID 0 in. (mm)	D: Keyway Height in. (mm)	E. Keyway Width in. (mm)	F: Case ID 0 in. (mm)	G: Mtg Hole BC \varnothing in. (mm)	J: (4) Mtg Holes f. n (mm)
SB-15B24-E04X	$\begin{aligned} & 5 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (26.9) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{aligned} & .250 \\ & \text { (6.4) } \end{aligned}$	$\begin{aligned} & .286 \\ & (7.3) \end{aligned}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 0.53 \\ & (13.5) \end{aligned}$	$\begin{aligned} & 1.31 \\ & (33.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$
SB-15B24-E05X	$\begin{aligned} & 5 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (26.9) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{array}{r} .312 \\ (7.9) \end{array}$	$\begin{array}{r} .364 \\ (9.2) \end{array}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 0.53 \\ & (13.5) \end{aligned}$	$\begin{aligned} & 1.31 \\ & (33.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$
SB-15B24-E06X	$\begin{aligned} & 5 \\ & (0.56) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (26.9) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{array}{r} .375 \\ (9.5) \end{array}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 0.53 \\ & (13.5) \end{aligned}$	$\begin{aligned} & 1.31 \\ & (33.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$
SB-17B24-E04X	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.79 \\ & (45.5) \end{aligned}$	$\begin{aligned} & 1.19 \\ & (30.2) \end{aligned}$	$\begin{aligned} & 1.37 \\ & (34.8) \end{aligned}$	$\begin{aligned} & .250 \\ & \text { (6.4) } \end{aligned}$	$\begin{aligned} & .286 \\ & (7.3) \end{aligned}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (14.7) \end{aligned}$	$\begin{aligned} & 1.64 \\ & (41.7) \end{aligned}$	$\begin{aligned} & .093 \\ & (2.4) \end{aligned}$
SB-17B24-E06X	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.79 \\ & (45.5) \end{aligned}$	$\begin{aligned} & 1.19 \\ & (30.2) \end{aligned}$	$\begin{aligned} & 1.37 \\ & (34.8) \end{aligned}$	$\begin{array}{r} .375 \\ (9.5) \end{array}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (14.7) \end{aligned}$	$\begin{aligned} & 1.64 \\ & (41.7) \end{aligned}$	$\begin{aligned} & .093 \\ & (2.4) \end{aligned}$
SB-17B24-E08X	$\begin{aligned} & 10 \\ & (1.13) \end{aligned}$	$\begin{aligned} & 1.79 \\ & (45.5) \end{aligned}$	$\begin{aligned} & 1.19 \\ & (30.2) \end{aligned}$	$\begin{aligned} & 1.37 \\ & (34.8) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{array}{r} .125 \\ (3.2) \end{array}$	$\begin{aligned} & 0.58 \\ & (14.7) \end{aligned}$	$\begin{aligned} & 1.64 \\ & (41.7) \end{aligned}$	$\begin{aligned} & .093 \\ & (2.4) \end{aligned}$
SB-19B24-E04X	$\begin{aligned} & 18 \\ & (2.03) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (50.8) \end{aligned}$	$\begin{aligned} & 1.19 \\ & (30.2) \end{aligned}$	$\begin{aligned} & 1.44 \\ & (36.6) \end{aligned}$	$\begin{aligned} & .250 \\ & \text { (6.4) } \end{aligned}$	$\begin{aligned} & .286 \\ & (7.3) \end{aligned}$	$\begin{aligned} & .062 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 1.77 \\ & (45.0) \end{aligned}$	$\begin{aligned} & .146 \\ & (3.7) \end{aligned}$
SB-19B24-E06X	$\begin{aligned} & 18 \\ & (2.03) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (50.8) \end{aligned}$	$\begin{aligned} & 1.19 \\ & (30.2) \end{aligned}$	$\begin{aligned} & 1.44 \\ & (36.6) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 1.77 \\ & (45.0) \end{aligned}$	$\begin{aligned} & .146 \\ & (3.7) \end{aligned}$

PERFORMANGE										
Model	Static Torque (Nm)	Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagement msec	Amature Disengagement msec	Armature Inertia ths.-in.-sec ${ }^{2}$	Rotor Inertia Ibs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft.-lbs./min
SB-15	5.0 (0.56)	24/90	96/1350	7.0	20.0	10.0	NA	4.38×10^{-6}	0.3 (0.1)	500
SB-17	10 (1.13)	24/90	64/908	10.0	20.0	10.0	NA	1.87×10^{-5}	0.7 (0.3)	700
SB-19	18 (2.03)	24/90	54/765	12.0	35.0	10.0	NA	2.36×10^{-5}	0.7 (0.3)	900

*See "How to order" model numbering system on page 105 for power-off brakes.
$X=$ Upon ordering, choose L or S for long or short hub length.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Customer shall maintain the perpendicularity of the case assembly mounting surface with respect to the shaft within .005 T.I.R. at the diameter of the bolt circle.
- Other voltages available upon request.
- Customer shall maintain concentricity of case assembly mounting pilot with respect to the shaft within .005 T.I.R.
- All SB series brakes are shipped burnished.
- Brake coupling armature assembly is secured to shaft by (2) set screws and key.
- Metric bores available

SB-23, 26, 28 Brakes

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.

SB Model Shown

DIMENSIONS										
Model*	Static Torque Ths.-in. (Nm)	$\begin{aligned} & \text { A: OD } \\ & \text { in. }(\mathrm{mm}) \end{aligned}$	B1: 0AL Short Hub in. (mm)	B2: OAL Long Hub in. (mm)	C: Hub ID \varnothing in. (mm)	D: Keyway Height in. (mm)	E. Keyway Width in. (mm)	F: Case ID 0 in. (mm)	$\begin{aligned} & \hline \text { G: Mtg Hole } \\ & \text { BC } \sigma \\ & \text { in. }(\mathrm{mm}) \\ & \hline \end{aligned}$	J: (4) Mtg Holes in.(mm)
SB-23B24-E05X	$\begin{aligned} & 35 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.40 \\ & (35.6) \end{aligned}$	$\begin{aligned} & 1.65 \\ & (41.9) \end{aligned}$	$.312 .$	$\begin{aligned} & .364 \\ & .3 .2) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & .79 \\ & (20.0) \end{aligned}$	$\begin{aligned} & 2.05 \\ & (52.1) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$
SB-23B24-E06X	$\begin{aligned} & 35 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.40 \\ & (35.6) \end{aligned}$	$\begin{aligned} & 1.65 \\ & (41.9) \end{aligned}$	$\begin{aligned} & .375 \\ & .395 \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & .79 \\ & (20.0) \end{aligned}$	$\begin{aligned} & 2.05 \\ & (52.1) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$
SB-23B24-E08X	$\begin{aligned} & 35 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.40 \\ & (35.6) \end{aligned}$	$\begin{aligned} & 1.65 \\ & (41.9) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & .79 \\ & (20.0) \end{aligned}$	$\begin{aligned} & 2.05 \\ & (52.1) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$
SB-23B24-E10X	$\begin{aligned} & 35 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.40 \\ & (35.6) \end{aligned}$	$\begin{aligned} & 1.65 \\ & (41.9) \end{aligned}$	$\begin{aligned} & .625 \\ & (15.9) \end{aligned}$	$\begin{aligned} & .709 \\ & (18.0) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$	$\begin{aligned} & .79 \\ & (20.0) \end{aligned}$	$\begin{aligned} & 2.05 \\ & (52.1) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$
SB-26B24-E06X	$\begin{aligned} & 40 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 2.87 \\ & (72.9) \end{aligned}$	$\begin{aligned} & 1.22 \\ & (31.0) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (36.8) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (16.0) \end{aligned}$	$\begin{aligned} & 2.50 \\ & (63.5) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$
SB-26B24-E08X	$\begin{aligned} & 40 \\ & (4.5) \end{aligned}$	$\begin{aligned} & 2.87 \\ & (72.9) \end{aligned}$	$\begin{aligned} & 1.22 \\ & (31.0) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (36.8) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (16.0) \end{aligned}$	$\begin{aligned} & 2.50 \\ & (63.5) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$
SB-28B24-E06X	$\begin{aligned} & 80 \\ & (9.0) \end{aligned}$	$\begin{aligned} & 3.03 \\ & (77) \end{aligned}$	$\begin{aligned} & 1.22 \\ & (31.0) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (36.8) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30.0) \end{aligned}$	$\begin{aligned} & 2.76 \\ & (70.0) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$
SB-28B24-E08X	$\begin{aligned} & 80 \\ & (9.0) \end{aligned}$	$\begin{aligned} & 3.03 \\ & (77) \end{aligned}$	$\begin{aligned} & 1.22 \\ & (31.0) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (36.8) \end{aligned}$	$.500$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{array}{r} .125 \\ (3.2) \end{array}$	$\begin{aligned} & 1.18 \\ & (30.0) \end{aligned}$	$\begin{aligned} & 2.76 \\ & (70.0) \end{aligned}$	$\begin{aligned} & 177 \\ & (4.5) \end{aligned}$
SB-28B24-E10X	$\begin{aligned} & 80 \\ & (9.0) \end{aligned}$	$\begin{aligned} & 3.03 \\ & (77) \end{aligned}$	$\begin{aligned} & 1.22 \\ & (31.0) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (36.8) \end{aligned}$	$\begin{aligned} & .625 \\ & (15.9) \end{aligned}$	$\begin{aligned} & .709 \\ & (18.0) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30.0) \end{aligned}$	$\begin{aligned} & 2.76 \\ & (70.0) \end{aligned}$	$\begin{aligned} & .177 \\ & (4.5) \end{aligned}$

PERFORMANGE										
Model	Static Torque los.-in. (Nm)	Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagement msec	Amature Disengagement msec	Armature Inertia lis.-in.-sec ${ }^{2}$	Rotor Inertia lbs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft - hb //min
SB-23	35 (4.0)	24/90	46.5/700	13.0	70.0	20.0	NA	1.77×10^{-5}	1.1 (0.5)	1200
SB-26	40 (4.5)	24/90	33/506	19.0	80.0	20.0	NA	1.14×10^{-4}	1.2 (0.5)	1400
SB-28	80 (9.0)	24/90	36/440	20.0	50.0	40.0	NA	1.06×10^{-4}	1.8 (0.8)	1800

*See "How to order" model numbering system on page 105 for power-off brakes.
X = Upon ordering, choose L or S for long or short hub length.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Customer shall maintain the perpendicularity of the case assembly mounting surface with respect to the shaft within .005 T.I.R. at the diameter of the bolt circle.
- Other voltages available upon request.
- Customer shall maintain concentricity of case assembly mounting pilot with respect to the shaft within .005 T.I.R.
- All SB series brakes are shipped burnished.
- Brake coupling armature assembly is secured to shaft by (2) set screws and key.
- Metric bores available

SB-30 \& 40 Brakes

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.

SB Model Shown

DIMENSIONS										
Model*	Static Torque Ths.-in. (Nm)	A: OD in. (mm)	B1: 0AL Short Hub in. (mm)	B2: 0AL Long Hub in. (mm)	C: Hub D D in. (mm)	D: Keyway Height in. (mm)	E. Keyway Width in. (mm)	F: Case ID 0 in. (mm)	G: Mtg Hole BC D in. (mm)	J: (4) Mtg Holes in. (mm)
SB-30B24-E06 X	$\begin{aligned} & 140 \\ & (15.8) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85.1) \end{aligned}$	$\begin{aligned} & 1.63 \\ & (41.4) \end{aligned}$	NA	$\begin{aligned} & .375 \\ & \text { (9.5) } \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.13 \\ & (28.7) \end{aligned}$	$\begin{aligned} & 2.91 \\ & (73.9) \end{aligned}$	$\begin{aligned} & .218 \\ & (5.5) \end{aligned}$
SB-30B24-E08X	$\begin{aligned} & 140 \\ & (15.8) \end{aligned}$	$\begin{aligned} & 3.35 \\ & \text { (85.1) } \end{aligned}$	$\begin{aligned} & 1.63 \\ & (41.4) \end{aligned}$	NA	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1.13 \\ & (28.7) \end{aligned}$	$\begin{aligned} & 2.91 \\ & (73.9) \end{aligned}$	$\begin{aligned} & .218 \\ & (5.5) \\ & \hline \end{aligned}$
SB-30B24-E10X	$\begin{aligned} & 140 \\ & (15.8) \end{aligned}$	$\begin{aligned} & 3.35 \\ & \text { (85.1) } \end{aligned}$	$\begin{aligned} & 1.63 \\ & (41.4) \end{aligned}$	NA	$\begin{aligned} & .625 \\ & (15.9) \end{aligned}$	$\begin{aligned} & .709 \\ & (18.0) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 1.13 \\ & (28.7) \end{aligned}$	$\begin{aligned} & 2.91 \\ & (73.9) \end{aligned}$	$\begin{aligned} & .218 \\ & (5.5) \end{aligned}$
SB-40B24-E06X	$\begin{aligned} & 265 \\ & (29.9) \end{aligned}$	$\begin{aligned} & 4.25 \\ & (108.0) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 3.75 \\ & \text { (95.3) } \end{aligned}$	$\begin{aligned} & .226 \\ & (5.7) \end{aligned}$
SB-40B24-E08X	$\begin{aligned} & 265 \\ & (29.9) \end{aligned}$	$\begin{aligned} & 4.25 \\ & (108.0) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .125 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 3.75 \\ & \text { (95.3) } \end{aligned}$	$\begin{aligned} & .226 \\ & (5.7) \end{aligned}$
SB-40B24-E10X	$\begin{aligned} & 265 \\ & (29.9) \end{aligned}$	$\begin{aligned} & 4.25 \\ & (108.0) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	$\begin{aligned} & .625 \\ & (15.9) \end{aligned}$	$\begin{aligned} & .709 \\ & (18.0) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 3.75 \\ & (95.3) \end{aligned}$	$\begin{aligned} & .226 \\ & \text { (5.7) } \end{aligned}$
SB-40B24-E12X	$\begin{aligned} & 265 \\ & (29.9) \end{aligned}$	$\begin{aligned} & 4.25 \\ & (108.0) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	$\begin{aligned} & .750 \\ & (19.1) \end{aligned}$	$\begin{aligned} & .837 \\ & (21.3) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 3.75 \\ & (95.3) \end{aligned}$	$\begin{aligned} & .226 \\ & \text { (5.7) } \end{aligned}$

PERFORMANGE										
Model	Static Torque lhs.-in. (Nm)	Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagement msec	Amature Disengagement msec	Armature Inertia lbs.-in.-sec ${ }^{2}$	Rotor Inertia lbs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft.-lls./min
SB-30	140 (15.8)	24/90	29/374	24.0	70.0	45.0	NA	1.72×10^{-4}	2.8 (1.3)	2200
SB-40	265 (29.9)	24/90	20/290	31.0	85.0	45.0	NA	8.34×10^{-3}	4.9 (2.2)	2500

*See "How to order" model numbering system on page 105 for power-off brakes.
X = Upon ordering, choose L or S for long or short hub length.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Customer shall maintain the perpendicularity of the case assembly mounting surface with respect to the shaft within .005 T.I.R. at the diameter of the bolt circle.
- Other voltages available upon request.
- Customer shall maintain concentricity of case assembly mounting pilot with respect to the shaft within .005 T.I.R.
- All SB series brakes are shipped burnished.
- Brake coupling armature assembly is secured to shaft by (2) set screws and key.
- Metric bores available

SB-50, 70 Brakes

Dimensions \& Specifications

Dimensions (mm)
Mounting requirements see page 128.

SB Model Shown

DIMENSIONS										
Model*	Static Torque lhs.-in. (Nm)	A: OD in. (mm)	B1: OAL Short Hub in. (mm)	B2: OAL Long Hub in. (mm)	C. Hub D 0 in. (mm)	D: Keyway Height in. (mm)	E. Keyway Width in. (mm)	F: Case ID 0 in. (mm)	G: Mtg Hole BC 0 in. (mm)	J: (4) Mitg Holes in. (mm)
SB-50B24-E10X	$\begin{aligned} & 350 \\ & (39.5) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (127.0) \end{aligned}$	$\begin{aligned} & 1.90 \\ & (48.3) \end{aligned}$	NA	$\begin{aligned} & .625 \\ & (15.9) \end{aligned}$	$\begin{aligned} & .709 \\ & (18.0) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 4.50 \\ & (114.3) \end{aligned}$	$\begin{aligned} & .226 \\ & (5.7) \end{aligned}$
SB-50B24-E12X	$\begin{aligned} & 350 \\ & (39.5) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (127.0) \end{aligned}$	$\begin{aligned} & 1.90 \\ & (48.3) \end{aligned}$	NA	$\begin{aligned} & .750 \\ & (19.1) \end{aligned}$	$\begin{aligned} & .837 \\ & (21.3) \end{aligned}$	$\begin{aligned} & .188 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 4.50 \\ & (114.3) \end{aligned}$	$\begin{aligned} & .226 \\ & (5.7) \end{aligned}$
SB-50B24-E16X	$\begin{aligned} & 350 \\ & (39.5) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (127.0) \end{aligned}$	$\begin{aligned} & 1.90 \\ & (48.3) \end{aligned}$	NA	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	$\begin{aligned} & 1.114 \\ & (28.3) \end{aligned}$	$\begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 4.50 \\ & (114.3) \end{aligned}$	$\begin{aligned} & .226 \\ & (5.7) \end{aligned}$
SB-70B24-E16X	$\begin{aligned} & 1200 \\ & (135.6) \end{aligned}$	$\begin{aligned} & 7.25 \\ & (184.2) \end{aligned}$	$\begin{aligned} & 2.77 \\ & (70.4) \end{aligned}$	NA	$\begin{aligned} & 1.000 \\ & (25.4) \end{aligned}$	$\begin{aligned} & 1.114 \\ & (28.3) \end{aligned}$	$\begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85.1) \end{aligned}$	$\begin{aligned} & 6.81 \\ & (173.0) \end{aligned}$	$\begin{aligned} & .281 \\ & (7.1) \end{aligned}$
SB-70B24-E24X	$\begin{aligned} & 1200 \\ & (135.6) \end{aligned}$	$\begin{aligned} & 7.25 \\ & (184.2) \end{aligned}$	$\begin{aligned} & 2.77 \\ & (70.4) \end{aligned}$	NA	$\begin{aligned} & 1.500 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 1.669 \\ & (42.4) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85.1) \end{aligned}$	$\begin{aligned} & 6.81 \\ & (173.0) \end{aligned}$	$\begin{aligned} & .281 \\ & (7.1) \end{aligned}$
SB-70B24-E32X	$\begin{aligned} & 1200 \\ & (135.6) \end{aligned}$	$\begin{aligned} & 7.25 \\ & (184.2) \end{aligned}$	$\begin{aligned} & 2.77 \\ & (70.4) \end{aligned}$	NA	$\begin{aligned} & 2.000 \\ & (50.8) \end{aligned}$	$\begin{aligned} & 2.223 \\ & (56.5) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85.1) \end{aligned}$	$\begin{aligned} & 6.81 \\ & (173.0) \end{aligned}$	$\begin{aligned} & .281 \\ & (7.1) \end{aligned}$

PERFORMANCE										
Model	Static Torque Ibs.-in. (Nm)	Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagement msec	Amatire Disengagement msec	Armature Inertia lbs.-in.-sec ${ }^{2}$	Rotor Inertia lbs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft.-Ibs./min
SB-50	350 (39.5)	24/90	19/291	32.0	160.0	110.0	NA	2.07×10^{-3}	6.5 (3.0)	2650
SB-70	1200 (135.6)	24/90	12/180	53.0	140.0	250.0	NA	16.34×10^{-3}	20.2 (9.2)	3900

*See "How to order" model numbering system on page 105 for power-off brakes.
X = Upon ordering, choose L or S for long or short hub length.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.

FSB-15 \& 17 Brakes

Dimensions \& Specifications

FSB Model Shown

Dimensions (mm)
Mounting requirements see page 128.

DIMENSIONS									
Model*	Static Torque Ibs.-in. (Nm)	A1: OD Body in. (mm)	A2: OD Flange in. (mm)	B1: OAL Short Hub in. (mm)	B2: 0AL Long Hub in. (mm)	C: Hub ID 0 in. (mm)	F: Case ID 0 in. (mm)	G: Mtg Hole BC 0 in. (mm)	J: (3) Mtg Holes in. (mm)
FSB-15U24-E03L	$\begin{aligned} & 1 \\ & (.12) \end{aligned}$	$\begin{aligned} & 1.37 \\ & (34.8) \end{aligned}$	$\begin{aligned} & 1.475 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 0.69^{* *} \\ & (17.5) \end{aligned}$	$\begin{aligned} & 0.9 \\ & (22.9) \end{aligned}$	$\begin{aligned} & .187 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 0.285 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30.0) \end{aligned}$	$\begin{aligned} & 3 \times .125 \\ & (3.2) \end{aligned}$
FSB-15U24-E04L	$\begin{aligned} & 1 \\ & \text { (.12) } \end{aligned}$	$\begin{aligned} & 1.37 \\ & (34.8) \end{aligned}$	$\begin{aligned} & 1.475 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 0.69^{* *} \\ & (17.5) \end{aligned}$	$\begin{aligned} & 0.9 \\ & (22.9) \end{aligned}$	$\begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 0.285 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30.0) \end{aligned}$	$\begin{aligned} & 3 \times .125 \\ & (3.2) \end{aligned}$
FSB-17U24-E04	3 (.34)	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 1.90 \\ & (48.3) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.0) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (26.9) \end{aligned}$	$\begin{aligned} & .250 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 0.415 \\ & (10.5) \end{aligned}$	$\begin{aligned} & 1.545 \\ & (39.2) \end{aligned}$	$\begin{aligned} & 3 \times .125 \\ & (3.2) \end{aligned}$
FSB-17U24-E05	3 (.34)	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 1.90 \\ & (48.3) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.0) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (26.9) \end{aligned}$	$\begin{aligned} & .312 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 0.415 \\ & (10.5) \end{aligned}$	$\begin{aligned} & 1.545 \\ & (39.2) \end{aligned}$	$\begin{aligned} & 3 \times .125 \\ & (3.2) \end{aligned}$
FSB-17U24-E06	3 (.34)	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	$\begin{aligned} & 1.90 \\ & (48.3) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (22.0) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (26.9) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 0.415 \\ & (10.5) \end{aligned}$	$\begin{aligned} & 1.545 \\ & (39.2) \end{aligned}$	$\begin{aligned} & 3 \times .125 \\ & (3.2) \end{aligned}$

PERFORMANCE										
Model	Static Torque lbs.-in. (Nm)	Coil Voltage VDC	Resistance Ohma nom.	Power Watts max	Armature Engagement msec	Amature Disengagement msec	Armature Inertia ths.-in.-sec ${ }^{2}$	Rotor Inertia Ibs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft.-Ins./min
FSB-15	1 (.12)	24/90	118/1750	6.0	25.0	15.0	NA	1.05×10^{-5}	0.2 (.09)	250
FSB-17	3 (.34)	24/90	92/1300	7.0	35.0	30.0	NA	1.45×10^{-5}	0.6 (.27)	350

*See "How to order" model numbering system on page 105 for power-off brakes.
$X=$ Upon ordering, choose L or S for long or short hub length.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.
${ }^{* *}$ Short Hub not available for size 15 .

General Notes

- Customer shall maintain the perpendicularity of the case assembly mounting surface with respect to the shaft within .005 T.I.R. at the diameter of the bolt circle.
- Other voltages available upon request.
- Customer shall maintain concentricity of case assembly mounting pilot with respect to the shaft within .005 T.I.R.

Brake coupling armature assembly is secured to shaf by (2) set screws.

- Metric bores available

RAB Series

Permanent Magnet Power-off Brakes

The RAB is a permanent magnet poweroff brake series that provides zero backlash stopping and/or holding of a load in the absence of power. While the field (electromagnet) is fixed and prevented from rotating, the output hub assembly is secured to the shaft. In the absence of power, the fixed and rotating components are engaged, thus stopping and/or holding the load. When the coil is energized, rotating components are disengaged, thus allowing the shaft to freely rotate. The RAB Series is RoHS, REACH and UL Class F compliant.

- Torque: 0.4 to 1239 lbs.-in. (. 04 to 140 Nm)
- Diameter: 1.1 to 6.3 in. (28 to 160 mm)
- Static or dynamic engagement
- Simple installation
- Economical cost
- Energy efficient

Typical Applications

- Robotics
- Medical equipment
- Actuators
- Motor brakes
- Material handling equipment
- Packaging

How to Order

* Other voltages available upon request
** English versions available upon request

General Notes

- Consult factory for additional options.
- Working air gap should be checked periodically to ensure proper operation. If it exceeds maximum recommended dimensions, the clutch or brake may not function properly.
- All friction faces must be kept free of grease and oil for proper operation.
- Flying leads are provided as standard, terminal style connection available upon request.
- Coil of 24 volts are provided as standard, other coil voltages are available upon request.

RAB-11, 13, 15, 20, 25, 32, 40, 50 \& 60 Metric Brakes

Dimensions \& Specifications

DIMENSIONS										
Model	Static Torque liss.-in. (Nm)	A: mm	B: mm	$\begin{aligned} & \text { C: } \\ & \text { mm } \end{aligned}$	$\begin{aligned} & \mathrm{D}: \\ & \mathrm{mm} \end{aligned}$	E. mm	F: mm	$\mathrm{G}:$ mm	M: mm	$\mathrm{N}:$ mm
RAB-11B24-M06	0.04 (0.4)	28	13.5	11	-	33.5	39	3.4	1X M3	19.5
RAB-13B24-M06	8.85 (1.0)	32	15	12.5	-	38	45	3.4	1X M3	21.5
RAB-15B24-M10	17.7 (2.0)	40	17	19	-	47	54	3.4	1X M4	22.5
RAB-20B24-M15	39.8 (4.5)	50	24	24	26	58	65	3.4	1X M4	28.5
RAB-25B24-M18	79.6 (9.0)	63	27.5	32	35	72	80	4.5	2X M5	26.8
RAB-32B24-M20	159.3 (18.0)	80	31	38	42	90	100	5.5	2X M5	29.9
RAB-40B24-M30	318.6 (36.0)	100	41	48.5	52	112	125	6.3	2X M6	33.9
RAB-50B24-M30	637.2 (72.0)	125	49	58	62	137	150	6.5	2X M6	37.8
RAB-60B24-M40	1239 (140.0)	160	65	75	80	175	190	9	2X M8	42.6

DIMENSIONS											
Model	$\begin{aligned} & \mathrm{O}: \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \mathrm{P}: \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \mathrm{O}: \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \mathrm{R}: \\ & \mathrm{mm} \end{aligned}$	$\mathrm{S}:$	T. mm	$\begin{aligned} & \mathrm{U}: \\ & \mathrm{mm} \end{aligned}$	V: mm	W: mm	$\begin{array}{\|l} \mathrm{X}: \\ \mathrm{mm} \end{array}$	$\begin{aligned} & \mathrm{d}: \\ & \mathrm{mm} \\ & \hline \end{aligned}$
RAB-11B24-M06	2	-	2.2	10.5	0.15-. 20	7	5	2.5	2	1	6
RAB-13B24-M06	2	-	2.1	12	0.15-. 20	10	8	4	2	1	6
RAB-15B24-M10	2	-	2.7	12	0.15-. 25	12	9.5	4	3	1.4	10
RAB-20B24-M15	2	1.8	3	14	0.25-. 35	12	9	5	5	2.3	15
RAB-25B24-M18	3	2	4	15	0.25-. 35	15	11.5	6	6	2.8	18
RAB-32B24-M20	3	2	4.5	16.5	0.25-. 35	20	16	8	6	2.8	20
RAB-40B24-M30	4	2.5	6.4	19	0.25-. 35	25	20	10	8	3.3	30
RAB-50B24-M30	5	3.5	7.2	23	0.40-. 50	30	24	12	7	3.3	30
RAB-60B24-M40	6	3.5	9.4	26	0.75-. 85	38	31	14	10	3.8	40

PERFORMANCE				
	Coil Voltage VDC	Power Watts max	Weight lbs. (kg)	
RAB-11B24-M06	24	8	$0.26(0.12)$	
RAB-13B24-M06	24	10	$0.33(0.15)$	
RAB-15B24-M10	24	11	$0.49(0.22)$	
RAB-20B24-M15	24	12	$0.84(0.38)$	
RAB-25B24-M18	24	18	$1.23(0.56)$	

PERFORMANCE			
	Coil Voltage VDC	Power Watts max	Weight los. (kg)
RAB-32B24-M20	24	24	$2.20(1.0)$
RAB-40B24-M30	24	26	$4.10(1.86)$
RAB-50B24-M30	24	40	$7.12(3.23)$
RAB-60B24-M40	24	50	$13.07(5.93)$

PMB Series

Power-off Brakes

The PMB Series are a power-off, DC, spring set brake that provides a low-cost, multi-functional brake alternative for many applications. The series offers nine frame sizes $(30,40,50,60,65,75,85,100)$ and a superior torque-to-size ratio.
Many extra features are offered with this versatile product series.

- Torque adjustment collar allows the torque to be varied depending on application.
- Engineered friction material on rotor assembly boosts maximum brake performance and extends life.
- Brake easily mounts to motor or frame. Mounting hardware included with brake.
- Brake case design offers excellent heat dissipation.
- Fully potted coils meet minimum requirements for class " F " insulation.
- UL Recognized Component
- Splined hub with anti-rattle feature promotes quiet operation
- Brake leads can be customized (connectors, sleeving) to meet special requirements.
- Dust cover (option) keeps foreign materials from interfering with brake actuation.
- Manual release lever (option) provides override to release brakes in the absence of power.

Typical Applications

- Factory automation
- Semiconductor
- Medical equipment
- Elevators
- Lift trucks
- Pallet trucks
- Electric vehicles
- Electric hoists
- Construction equipment
- Winches \& cranes
- Electric motor brakes
- Conveyors

- Robotics
- Floor sweepers
- Scissor lifts
- Automated material handling equipment

How to Order

PMB-30, 40, 50, 60, 65, 75, 85 \& 100 Brakes

Dimensions \& Specifications

PERFORMANCE										
Model	Static Torque lhs.-in. (Nm)	Coil Voltage VDC	Resistance Ohms@ 20º nom.	Power Watts max	Speed RPM	Armature Engagement msec	Armature Disengagement msec	Rotor Inertia lbs.-in.-sec ${ }^{2}$	Weight lbs. (kg)	Energy Dissipation ft-Ibs./min
PMB-30	45 (5)	24/90/190	30.4/405/1805	20	3000	15	55	1.15×10^{-4}	3 (1.36)	1840
PMB-40	70 (8)	24/90/190	24.5/324/1444	25	3000	20	60	3.98×10^{-4}	4 (1.8)	2240
PMB-50	142 (16)	24/90/190	19.8/270/1203	30	3000	20	90	2.30×10^{-3}	7.5 (3.4)	2790
PMB-60	283 (32)	24/90/190	15.2/202.3/903	40	3000	20	120	4.96×10^{-3}	11 (4.8)	3225
PMB-65	530 (60)	24/90/190	14.7/162/722	50	3000	20	210	6.75×10^{-3}	16 (7.3)	3550
PMB-75	708 (80)	24/90/190	10.6/124.6/555	65	3000	190	230	1.68×10^{-2}	27 (12)	4120
PMB-85	1505 (170)	24/90/190	7.84/95.3/425	85	1500	300	260	3.28×10^{-2}	40 (18)	4720
PMB-100	2655 (300)	24/90/190	5.2/73.6/328	110	1500	350	550	6.69×10^{-2}	55 (25)	5575

[^10]
PMB Series Brakes

Dimensions \& Specifications

BORE \& KEYWAY DATA			
Model*	$\begin{aligned} & \text { b: Bore** } \\ & \text { in. (mm) } \end{aligned}$	c: Keyway Height in. (mm)	d: Keyway Width in. (mm)
PMB-30BXX-E06-MRD	0.375 (9.5)	0.425 (10.8)	0.094 (2.4)
PMB-30BXX-E08-MRD	0.500 (12.7)	0.564 (14.3)	0.125 (3.2)
PMB-30BXX-M11-MRD	0.433 (11.0)	0.512 (13.0)	0.157 (4)
PMB-40BXX-E08-MRD	0.500 (12.7)	0.564 (14.3)	0.125 (3.2)
PMB-40BXX-E10-MRD	0.625 (15.9)	0.709 (18.0)	0.188 (4.8)
PMB-40BXX-M15-MRD	0.591 (15.0)	0.681 (17.3)	0.197 (5)
PMB-50BXX-E10-MRD	0.625 (15.9)	0.709 (18.0)	0.188 (4.8)
PMB-50BXX-E12-MRD	0.750 (19.0)	0.837 (21.3)	0.188 (4.8)
PMB-50BXX-M15-MRD	0.591 (15.0)	0.681 (17.3)	0.197 (5)
PMB-50BXX-M20-MRD	0.787 (20.0)	0.878 (22.3)	0.197 (5)
PMB-60BXX-E12-MRD	0.750 (19.0)	0.837 (21.3)	0.188 (4.8)
PMB-60BXX-E16-MRD	1.000 (25.4)	1.114 (28.3)	0.250 (6.3)
PMB-60BXX-M20-MRD	0.787 (20.0)	0.878 (22.3)	0.197 (5)
PMB-60BXX-M25-MRD	0.984 (25.0)	1.103 (28.0)	0.276 (7)
PMB-65BXX-E16-MRD	1.000 (25.4)	1.114 (28.3)	0.250 (6.3)
PMB-65BXX-E18-MRD	1.125 (28.6)	1.251 (31.8)	0.250 (6.3)
PMB-65BXX-M25-MRD	0.984 (25.0)	1.103 (28.0)	0.276 (7)
PMB-65BXX-M30-MRD	1.181 (30.0)	1.299 (33.0)	0.276 (7)
PMB-75BXX-E16-MRD	1.000 (25.4)	1.114 (28.3)	0.250 (6.3)
PMB-75BXX-E18-MRD	1.125 (28.6)	1.251 (31.8)	0.250 (6.3)
PMB-75BXX-M25-MRD	0.984 (25.0)	1.103 (28.0)	0.276 (7)
PMB-75BXX-M30-MRD	1.181 (30.0)	1.299 (33.0)	0.276 (7)
PMB-85BXX-E22-MRD	1.375 (34.9)	1.517 (38.5)	0.313 (7.9)
PMB-85BXX-E24-MRD	1.500 (38.1)	1.669 (42.4)	0.375 (9.5)
PMB-85BXX-M35-MRD	1.378 (35.0)	1.527 (38.8)	0.394 (10)
PMB-85BXX-M40-MRD	1.575 (40.0)	1.725 (43.8)	0.394 (10)
PMB-100BXX-E22-MRD	1.375 (34.9)	1.517 (38.5)	0.313 (7.9)
PMB-100BXX-E24-MRD	1.500 (38.1)	1.669 (42.4)	0.375 (9.5)
PMB-100BXX-M35-MRD	1.378 (35.0)	1.527 (38.8)	0.394 (10)
PMB-100BXX-M40-MRD	1.575 (40.0)	1.725 (43.8)	0.394 (10)

*See "How to order" model numbering system on page 114 for PMB brakes.
$X X=$ Upon ordering, choose voltage, see page 114 for options.
$(-)$ denotes metric equivalents. Specifications subject to change without notice.
**Other bore sizes available upon request.

Installation Diagram

Gap Adjustment

Model shown at left is complete with all accessories. Model on right is shown with accessories removed. Accessories include: (A) manual release; (B) spline hub, (C) anti-rattle feature (o-ring) and (D) dust cover.

Notes

\qquad

MBRP Series

Metric Power-off Spring Set Brakes

The MBRP Series are a power-off, DC, spring set brake that provides a low-cost, multi-functional brake alternative for many applications. The series offers five frame sizes ($15,19,22,26 \& 30$) and a superior torque-to-size ratio.
Many extra features are offered with this versatile product series.

- Engineered friction material on rotor assembly boosts maximum brake performance and extends life.
- Brake easily mounts to motor or frame. Simple square drive hub attached to shaft with set screw and keyway provided.
- Fully potted coils meet minimum requirements for class " F " insulation.
- UL Recognized Component
- Square drive hub with anti-rattle feature promotes quiet operation.
- Brake leads can be customized (connectors, sleeving) to meet special requirements.
- Manual release lever (option) provides override to release brakes in the absence of power.
- RoHS compliant

Typical Applications

- Mobility scooters \& carts
- Factory automation
- Semiconductor
- Military/aerospace
- Medical equipment
- Electric hoists
- Robotics
- Automated material handling equipment

How to Order

[^11]
MBRP-15, 19, 22, 26 \& 30 Metric Brakes

Dimensions \& Specifications

MBRP 15 \& 19

MBRP 22, 26 \& 30

Dimensions (mm)
Mounting requirements see page 128.

DIMENSIONS															MANUAL RELEASE			
Mode**	Static Torque NM (llis.- in.)	A: OD mm (in.	$\begin{array}{l\|l} & \text { B: OAL } \\ \text { 1.) } & \mathrm{mm} \text { (in.) } \end{array}$	C: Bore mm (in.)	D: K'way Height mm (in.)	E: K'way Wigth mm (in.)	F: Cas ID mm (in		G: Flange ID mm (in.)			J: Mtg Holes mm (in.)	K:Slot mm (in.)	L: Mtg Hole BC mm (in.)	M: mm (in.)	$\mathrm{N}:$ (in.)	P: mm (in.)	R: mm (in.)
MBRP-15BXX-M5	$\begin{aligned} & 0.24 \\ & (2.12) \end{aligned}$	$\begin{aligned} & 37 \\ & (1.46) \end{aligned}$	$\begin{aligned} & 32 \\ & (1.26) \end{aligned}$	$\begin{aligned} & 5 \\ & (0.197) \end{aligned}$	NA	NA	$\begin{aligned} & 13.5 \\ & (0.53) \end{aligned}$		$\begin{aligned} & 18 \\ & (0.71) \end{aligned}$	$\begin{aligned} & 9 \\ & 10, \end{aligned}$		$\begin{aligned} & 3 \\ & \text { (0.12) } \\ & 4 \text { Holes } \end{aligned}$	$\begin{aligned} & 6 \\ & (0.24) \end{aligned}$	$\begin{aligned} & 32 \\ & (1.26) \end{aligned}$	NA	NA	NA	NA
MBRP-15BXX-M6	$\begin{aligned} & 0.24 \\ & (2.12) \end{aligned}$	$\begin{aligned} & 37 \\ & (1.46) \end{aligned}$	$\begin{aligned} & 32 \\ & (1.26) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.236) \end{aligned}$	NA	NA	$\begin{aligned} & 13.5 \\ & (0.53) \end{aligned}$		$\begin{aligned} & 18 \\ & (0.71) \end{aligned}$	$\begin{aligned} & 9 \\ & (0.3 \end{aligned}$		$\begin{aligned} & 3 \\ & \text { (0.12) } \\ & 4 \text { Holes } \end{aligned}$	$\begin{aligned} & 6 \\ & (0.24) \end{aligned}$	$\begin{aligned} & 32 \\ & (1.26) \end{aligned}$	NA	NA	NA	NA
MBRP-19BXX-M6-XX	$\begin{aligned} & 0.50 \\ & (4.43) \end{aligned}$	$\begin{aligned} & 47 \\ & (1.85) \end{aligned}$	$\begin{aligned} & 32 \\ & (1.26) \end{aligned}$	$\begin{aligned} & 6 \\ & (0.236) \end{aligned}$	NA	NA	$\begin{aligned} & 16 \\ & (0.63) \end{aligned}$		$\begin{aligned} & 21 \\ & (0.83) \end{aligned}$	$\begin{aligned} & 12 \\ & 10.4 \end{aligned}$		$\begin{aligned} & 3.40 \\ & \text { (0.13) } \\ & 4 \text { Holes } \end{aligned}$	7 (0.28)	$\begin{aligned} & 40 \\ & (1.57) \end{aligned}$	$\begin{aligned} & 51 \\ & (2.01) \end{aligned}$	$\begin{aligned} & 50 \\ & (1.97) \end{aligned}$	$\begin{aligned} & 13 \\ & (0.51) \end{aligned}$	$\begin{aligned} & 9 \\ & (0.35) \end{aligned}$
MBRP-19BXX-M7-XX	$\begin{aligned} & 0.50 \\ & (4.43) \end{aligned}$	$\begin{aligned} & 47 \\ & (1.85) \end{aligned}$	$\begin{aligned} & 32 \\ & (1.26) \end{aligned}$	$\begin{aligned} & 7 \\ & (0.276) \end{aligned}$	NA	NA	$\begin{aligned} & 16 \\ & (0.63) \end{aligned}$		$\begin{aligned} & 21 \\ & (0.83) \end{aligned}$	$\begin{aligned} & 12 \\ & 10.4 \end{aligned}$		$\begin{aligned} & 3.40 \\ & (0.13) \\ & 4 \text { Holes } \end{aligned}$	7 (0.28)	$\begin{aligned} & 40 \\ & (1.57) \end{aligned}$	$\begin{aligned} & 51 \\ & (2.01) \end{aligned}$	$\begin{aligned} & 50 \\ & (1.97) \end{aligned}$	$\begin{aligned} & 13 \\ & (0.51) \end{aligned}$	$\begin{aligned} & 9 \\ & (0.35) \end{aligned}$
MBRP-22BXX-M8-XX	$\begin{aligned} & 1.00 \\ & (8.85) \end{aligned}$	$\begin{aligned} & 56 \\ & (2.20) \end{aligned}$	$\begin{aligned} & 32 \\ & (1.26) \end{aligned}$	$\begin{aligned} & 8 \\ & (0.315) \end{aligned}$	NA	NA	$\begin{aligned} & 19 \\ & (0.75) \end{aligned}$		$\begin{aligned} & 24 \\ & (0.94) \end{aligned}$	$\begin{aligned} & 12 \\ & 10.4 \end{aligned}$		$\begin{aligned} & 3.40 \\ & \text { (0.13) } \\ & 4 \text { Holes } \end{aligned}$	7 (0.28)	$\begin{aligned} & 48 \\ & (1.89) \end{aligned}$	$\begin{aligned} & 60 \\ & (2.36) \end{aligned}$	$\begin{aligned} & 60 \\ & (2.36) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 11 \\ & (0.43) \end{aligned}$
MBRP-26BXX-M10-XX	$\begin{aligned} & 2.00 \\ & (17.70) \end{aligned}$	$\begin{aligned} & 65 \\ & (2.56) \end{aligned}$	$\begin{aligned} & 34 \\ & (1.34) \end{aligned}$	$\begin{aligned} & 10 \\ & (0.394) \end{aligned}$	$\begin{aligned} & 1.20 \\ & (0.05) \end{aligned}$	$\begin{aligned} & 3.00 \\ & (0.118) \end{aligned}$	$\begin{aligned} & 24 \\ & (0.94) \end{aligned}$		$\begin{aligned} & 35 \\ & (1.38) \end{aligned}$	$\begin{aligned} & 14 \\ & (0.5 \end{aligned}$		$\begin{aligned} & 3.40 \\ & \text { (0.13) } \\ & 6 \text { Holes } \end{aligned}$	7 (0.28)	$\begin{aligned} & 58 \\ & (2.28) \end{aligned}$	$\begin{aligned} & 70 \\ & (2.76) \end{aligned}$	$\begin{aligned} & 70 \\ & (2.76) \end{aligned}$	$\begin{aligned} & 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.47) \end{aligned}$
MBRP-30BXX-M12-XX	$\begin{aligned} & 4.00 \\ & (35.40) \end{aligned}$	$\begin{aligned} & 75 \\ & (2.95) \end{aligned}$	$\begin{aligned} & 36 \\ & (1.42) \end{aligned}$	$\begin{aligned} & 12 \\ & (0.472) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 28 \\ & (1.10) \end{aligned}$		$\begin{aligned} & 36 \\ & (1.42) \end{aligned}$	$\begin{aligned} & 14 \\ & 10.5 \end{aligned}$		$\begin{aligned} & 4.50 \\ & \text { (0.18) } \\ & 6 \text { Holes } \end{aligned}$	9 (0.35)	$\begin{aligned} & 66 \\ & (2.60) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 80 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 20 \\ & (0.79) \end{aligned}$	$\begin{aligned} & 14 \\ & (0.55) \end{aligned}$
PERFORMANCE																		
Model	Static Torque Nm (lbs-in.)		Coil Voltage VDC	Resistance Ohms nom.	Power Watts max	Armature Engagement msec		Armature Disengagement msec			Armature Inertia kgcm^{2} (ths.-in.-sec²)			Weight kg (libs.)	Energy Dissipation ft.-lbs./min		Recomm. Air Gap at Install mm (in.)	
MBRP-15BXX-Bore	0.24 (2.12) 1		12/24/90	28.8/115/16220	5.0	15		10			$0.000006\left(5.31 \times 10^{-9}\right)$			0.2 (0.441)	500		0.1 (0.004)	
MBRP-19BXX-Bore-XX	0.50 (4.43)		12/24/90	21.8/87.3/1228	6.6	15		10			$0.0000019\left(1.68 \times 10^{-9}\right) \quad 0$			$\begin{aligned} & 0.3(0.661) \\ & 0.4(0.882) \end{aligned}$	900		0.1 (0.004)	
MBRP-22BXX-Bore-XX	1.00 (8.85)		12/24/90	16/64/988	8.2	30		25			$0.0000038\left(3.36 \times 10^{-9}\right)$				1100		0.15 (0.006)	
MBRP-26BXX-Bore-XX	2.00 (17.70)		12/24/90	12.5/50.1/810	11.5	35		30			$0.000012\left(1.06 \times 10^{-8}\right)$			0.6 (1.323)	1400		0.15 (0.006)	
MBRP-30BXX-Bore-XX	4.00 (35.40) $\quad 1$		12/24/90	11.1/44.3/623	13.0	40		35		$0.000023\left(2.04 \times 10^{-8}\right)$				0.8 (1.764)	1800		0.15 (0.006)	

*See "How to order" model numbering system on page 105 for power-off brakes.
$(-)$ denotes English equivalents. Specifications subject to change without notice. ** Unburnished ${ }^{* * *}$ Consult factory

TC / TCR Series

Power-on and Power-off Tooth Clutches

When used in either static or low-speed engagement applications, tooth clutches and clutch couplings provide an efficient, positive, switchable link between a motor and load on inline or parallel shafts.
While the field (electromagnet) assembly is prevented from rotating by a fixed flange, the rotor is generally attached to the input shaft. The armature assembly is securely mounted to either an inline load shaft or a parallel shaft by means of pulleys or gears. When the coil is energized, the tooth profile of the armature positively engages the tooth profile of the rotor, coupling the two inline or parallel shafts, thus driving the load.
Tooth brakes (not shown) provide an efficient, positive, switchable means of either holding a load or decelerating a load from a slow speed, generally 20 RPM or less. Utilizing the same principle as the tooth clutch, these brakes can be used to effectively hold a load in position. Available in power-on or power-off models, tooth brakes are ideal for applications requiring high torque in tight places.

- Torque: up to $250 \mathrm{lbs} .-\mathrm{in}$. (28.2 Nm)
- Diameter: 2.13 in. (54.1 mm)
- Positive engagement, indexing capability
- Highest torque density
- Power-on and power-off
- Zero wear at speed when not engaged
- Standard and custom designs

Typical Applications

TCR Model Shown

- Military aerospace actuators
- Avionics and flight control
- Medical equipment
- Postal handling equipment
- Machine tools
- Robotics

How to Order

TC-19 \& TCR-19 Tooth Clutches

Dimensions \& Specifications

TCR Model Shown

DIMENSIONS															
Model	Static Torque Ths.-in. (Nm)	A: OD in. (mm)	B: OAL in. (mm)	C. Bore 0 in. (mm)	D: K'way Height in. (mm)	E: Kway Width in. (mm)	F: Case Pilot Ø in. (mm)	G: (3) Gase Mtg Holes in. (mm)	H: Case Mtg Holes 0 in. (mm)	J: Mtg Slot Width in. (mm)	K: Mtg Slot Length in. (mm)	L: Mtg Slot Depth in. (mm)	M: Mig Pilot 0 in. (mm)	N: (3) Mitg Holes	P: Mtg Hole BC 0 in. (mm)
TC-19-24-E06	$\begin{aligned} & 250 \\ & (28.2) \end{aligned}$	$\begin{aligned} & 2.13 \\ & (54.1) \end{aligned}$	$\begin{aligned} & 2.38 \\ & (60.5) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{aligned} & \# 8-32 \mathrm{x} \\ & .22 \mathrm{DP} \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	NA	NA	$\begin{aligned} & 1,000 \\ & (25.4) \end{aligned}$	$\begin{aligned} & \# 8-32 x \\ & .19 \mathrm{DP} \end{aligned}$	$\begin{aligned} & 1.44 \\ & (36.6) \end{aligned}$
TC-19-24-E08	$\begin{aligned} & 250 \\ & (28.2) \end{aligned}$	$\begin{aligned} & 2.13 \\ & (54.1) \end{aligned}$	$\begin{aligned} & 2.38 \\ & (60.5) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .126 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{aligned} & \# 8-32 \mathrm{x} \\ & .22 \mathrm{DP} \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	NA	NA	$\begin{aligned} & 1,000 \\ & (25.4) \end{aligned}$	$\begin{aligned} & \text { \#8-32 x } \\ & .19 \mathrm{DP} \end{aligned}$	$\begin{aligned} & 1.44 \\ & (36.6) \end{aligned}$
TCR-19-24-E06	$\begin{aligned} & 250 \\ & (28.2) \end{aligned}$	$\begin{aligned} & 2.13 \\ & (54.1) \end{aligned}$	$\begin{aligned} & 2.38 \\ & (60.5) \end{aligned}$	$\begin{aligned} & .375 \\ & (9.5) \end{aligned}$	$\begin{aligned} & .425 \\ & (10.8) \end{aligned}$	$\begin{aligned} & .094 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{aligned} & \text { \#8-32 x } \\ & .22 \text { DP } \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	NA	NA	$\begin{aligned} & 1,000 \\ & (25.4) \end{aligned}$	$\begin{aligned} & \text { \#8-32 x } \\ & .16 \mathrm{DP} \end{aligned}$	$\begin{aligned} & 1.44 \\ & (36.6) \end{aligned}$
TCR-19-24-E08	$\begin{aligned} & 250 \\ & (28.2) \end{aligned}$	$\begin{aligned} & 2.13 \\ & (54.1) \end{aligned}$	$\begin{aligned} & 2.38 \\ & (60.5) \end{aligned}$	$\begin{aligned} & .500 \\ & (12.7) \end{aligned}$	$\begin{aligned} & .564 \\ & (14.3) \end{aligned}$	$\begin{aligned} & .126 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 1.125 \\ & (28.6) \end{aligned}$	$\begin{aligned} & \# 8-32 \mathrm{x} \\ & 27 \mathrm{DP} \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44.5) \end{aligned}$	NA	NA	NA	$\begin{aligned} & 1,000 \\ & (25.4) \end{aligned}$	$\begin{aligned} & \# 8-32 \mathrm{x} \\ & .16 \mathrm{DP} \end{aligned}$	$\begin{aligned} & 1.44 \\ & (36.6) \end{aligned}$
PERFORMANCE															
Model		Static Torque Ihs.-in. (Nm)		Coil Voltage VDC		Resistan Ohms nom		Power Watts max		Engageme Speed RPM (max)		RPM max		Weight lbs. (kg)	
TC-19		250 (28.2)		24/90		47/653		16.7		20		3600		1.7 (0.7)	
TCR-19		250 (28.2)		24/90		47/653		16.7		20		3600		1.8 (0.8)	

$(-)$ denotes metric equivalents. Specifications subject to change without notice.

General Notes

- Torque may decrease at higher RPM due to misalignment and vibration associated with the application.
- Engagement speed can be significantly increased and is directly related to system inertia. Consult factory for more information.
- Most tooth clutch applications require a high degree of attention with respect to shaft concentricity and mounting perpendicularity. Consult factory for details.
- Other voltages available upon request.
- Additional sizes and configurations are available upon request. Torque values can be greatly enhanced as well. Consult factory for additional information.

Engineered Products

Power-off Spring Set (Safety) - LBRP Series

Spring Set electromagnetic power-off brakes provide a safe, efficient means of stopping and/or holding a load in the absence of power. Custom manufactured for wheelchair and the handicap scooter industry, our LBRP series brakes have optional manual release handles and some models are available with micro switches (to indicate whether the brake is released or engaged). Our LBRP series power-off spring set brakes can be used as a stopping (emergency stopping) or holding brake (parking). These brakes are manufactured in low-cost regions, allowing the lowest prices available in the market.

- Static Torque: 1 to 13 Nm (8.85 to 115 lbs.-in.)
- Bore size (Shaft Dia.): 6 to 12 mm (0.236 to 0.472 in.)
- Assembly and all components meet EU Directive 2002/95/EC (RoHS)
- Plated steel surfaces to withstand corrosion
- Tough, durable, long-wearing friction materials
- Anti-rattle feature
- Operating speeds up to 3600 RPM

Other Applications Include:

- Patient lifts
- Handicap van/RV/truck actuators
- Electric vehicles

LBRP Series
Contact our Applications Team for more information.

- Diameter: 42 to 100 mm

Multi Disc Brakes and Clutches - MDB/MDC Series

Multiple Disc Clutches provide a smooth efficient, switchable link between a motor and a load on inline or parallel shafts. While the field (electromagnet) assembly is prevented from rotating by an antirotation tab or flange, the rotor is securely mounted on the drive shaft. The armature assembly is then mounted either directly on an opposing inline shaft or indirectly on a parallel shaft by means of gears or pulleys. When the coil is energized, the armature engages the friction surface of the rotor, further engaging the multiple discs within the assembly until full torque is achieved, thereby coupling the two inline or parallel shafts, thus driving the load. A brake operates similarly by eliminating the rotor.

- Torque: 25 lbs .-in. to 300 lbs .ft. (2.8 to 407 Nm)
- Diameter: 2.0 to 10 in .
(50.8 to 254.0 mm)
- Dynamic engagement capabilities
- Wet or dry operation
- Custom designs only

Typical Applications

- Flight control actuators
- Postal equipment
- Packaging
- Machine tools
- Agricultural equipment MDC Model Shown

Complete Custom Assemblies and Subassemblies

Custom Brake and Clutch Value-Added Assemblies are a major strength of Thomson. Variations of any device shown in this catalog can be adapted specifically to meet the most demanding needs of your application.
Custom gears, pulleys, sprockets, integrally mounted to the clutch can be combined with special shaft sizes, coil voltages, connector assemblies or any other type of design imaginable.

We manufacture complete assemblies and subassemblies for many customers. Allow us to help cost-reduce your product and provide a more economical solution to your most complex clutch or brake application.

- Torque: 6.0 oz.-in. to 1200 lbs.-in. (0.04 to 135 Nm)
- Diameters: 0.6 to 7.25 in. (15.2 to 184.2 mm)
- Efficient means of cycling load
- Fast response, repeatable performance
- Static or dynamic engagement
- Simple installation
- Economical cost
- Energy efficient

See inside back cover of this catalog for more information.

Notes

\qquad

Custom Clutch \& Brake Capabilities

Can't find what you're looking for in this catalog? Deltran has you covered.

Deltran offers a wide variety of standard clutches and brakes that can be utilized in many applications. However, sometimes your design considerations fall outside of standard component specifications. In cases such as these, Deltran experts work closely with you and your team to provide customized solutions that meet the unique challenges of your applications.
Ask us about our highly engineered solutions - from small-volume aerospace and defense to high-volume automotive applications all at a competitive cost.

Deltran builds custom clutches and brakes for a wide variety of markets and applications, including:

Medical

Our brakes are used in medical equipment as holding brakes to consistently hold a load in position at a specific stopping point. Our clutches are used to drive belts and cables for patient lifts and other medical applications.

- Patient tables and lifts
- Patient beds
- Mammography equipment
- Pill dispensing machines
- Nuclear imaging (C.A.T. scan)
- Digital Imaging
- X-ray machinery applications

Semiconductor and Electronic Assembly Our clutch/brake technology ensures high reliability and quality while being cost effective in semiconductor applications.

- Wafer-handling robots
- Inspection test sytems
- Pick-and-place machines
- Automated die bonding equipment
- Product handling storage elevator
- Surface mount technology (SMT)

Material Handling/Packaging
Long life and reliability are key attributes for clutches and brakes used in material handling and packaging applications.

- Conveyor systems
- Baggage handling conveyors
- Pick-and-place machines
- Strapping machines
- Food labelling systems
- Food dispensing
- Egg packing equipment
- Crimping machines

Aerospace and Defense

Wrap spring and friction units are used in commercial and military aircraft vehicles and equipment.

- Autopilot systems
- Satellites
- Fuel control
- Tank gun turret
- Helicopter actuators
- Onboard instrumentation
- Valves
- Air cabin control backup systems
- Missiles/precision guided munition

Automotive
Cars, vans and SUV utilize wrap spring clutches, custom power-off brakes and power-on tooth clutches in many applications.

- Cinch/latch mechanisms for doors and trunks
- Actuators
- Cruise control
- Power liftgate
- Transaxles
- Power sliding doors

Electric Vehicle Systems

Friction brakes are utilized in many batterypowered vehicle applications, including lift tucks, golf cars and sweeping machines.

- Scissor lifts
- Electric hoists and cranes
- Steering applications
- Lift trucks
- By wire applications
- Electric sweeping machines

Design Considerations

Factors To Consider

Brake and Clutch design considerations are based on a number of factors. Depending upon the particular application, these factors can become either more or less important. The discussion of Application Definitions differentiates
between heavy, medium and light duty, as well as static versus dynamic applications. In a simple light-duty, static-use application, clutch or brake selection can be made based on an estimate of torque required considering the motor torque
capacity and the load driven (or held). However, when precise control and life expectancy are of concern, one must consider inertia, heat dissipation and speed as key factors.

Inertia Calculations

Total system inertia, typically expressed in lbs.-in.-sec ${ }^{2}$ units, equals the sum of reflected inertia $\left(I_{R}\right)$ and clutch inertia ($\left.I_{C}\right)$.
Clutch inertia values can be found in our catalog, reflected inertia is calculated beginning with load inertia.

Load inertia $\left(I_{L}\right)$ for cylindrical rotational bodies, expressed in units of lbs.-in.-sec ${ }^{2}$, is equal to $W R^{2} / 772$, where $\mathrm{W}=$ weight in lbs. and $R=$ radius in inches. The following chart may be used as reference (based on steel, per inch of length) to help simplify this calculation. To determine the inertia
of a given shaft, multiply the $W \mathrm{R}^{2} / \mathrm{L}$ shown below by the length of the shaft or the thickness of the disc in inches. For hollow shafts, subtract the WR2/L of the ID from the WR2/L of the OD and multiply by the length.

Diameter in.	WR ${ }^{2} / \mathrm{L}$ lbs.-in.2/in.	Diameter in.	WR2/L lis.-in.2/in.	Diameter in.	WR ${ }^{2} / \mathrm{L}$ los.-in.2/in.	Diameter in.	$W^{2}{ }^{2} /$ lbs.-in.2/in
0.250	0.00011	2.00	0.445	6.00	36.00	10.00	277.92
0.312	0.00027	2.25	0.712	6.25	42.39	10.25	306.72
0.375	0.00055	2.50	1.085	6.50	49.60	10.50	337.71
0.437	0.00102	2.75	1.584	6.75	57.68	10.75	371.04
0.500	0.00173	3.00	2.250	7.00	66.71	11.00	406.78
0.562	0.00279	3.25	3.100	7.25	76.76	11.25	444.96
0.625	0.00425	3.50	4.176	7.50	87.91	11.50	485.93
0.687	0.00623	3.75	5.494	7.75	100.23	11.75	529.59
0.750	0.00879	4.00	7.113	8.00	113.90	12.00	576.00
0.812	0.01215	4.25	9.072	8.25	128.71	12.25	626.10
0.875	0.01634	4.50	11.393	8.50	145.00	12.50	678.31
0.937	0.02142	4.75	14.144	8.75	162.86	12.75	734.22
1.000	0.02778	5.00	17.365	9.00	182.29	13.00	793.52
1.250	0.06783	5.25	21.107	9.25	203.40	13.25	856.35
1.500	0.14065	5.50	25.488	9.50	226.30	13.50	922.83
1.750	0.26058	5.75	30.371	9.75	252.00	13.75	993.11

To obtain this information for materials other than steel, multiply the inertia of the proper steel diameter from the above chart using the correct multiplier in the chart at right.

Reflected inertia can now be calculated as $I_{R}=I_{L}\left(\omega_{L} / \omega_{C}\right)^{2}$, where $\omega_{L}=$ load RPM and $\omega_{\mathrm{C}}=$ clutch input RPM.

Material	Multiplier
Bronze	1.05
Steel	1.00
Iron	0.92
Powder Metal Bronze	0.79
Powder Metal Iron	0.88
Aluminum	0.35
Nylon	0.17

Design Considerations

Energy Dissipation Calculations

Total energy dissipation（ E_{c} ），typically expressed in units of $\mathrm{ft} .-\mathrm{lbs}$ ．，is defined as the sum of kinetic $\left(\mathrm{E}_{\mathrm{k}}\right)$ and slip $\left(\mathrm{E}_{\mathrm{s}}\right)$ energy dissipated each clutch or brake cycle．

Kinetic energy dissipation（ E_{k} ）is equal to $4.6 \times 10^{-4} \times I \times \omega^{2}$ ，where $\mathrm{I}=$ total system inertia in lbs．－in．－sec ${ }^{2}$ units，and $\omega=$ differ－ ential slip speed in RPM．

Slip energy dissipation（ E_{s} ）is equal to $43.6 \times 10^{-4} \mathrm{x} \omega \times \mathrm{Dxt} \mathrm{t}_{\mathrm{s}}$ where $\mathrm{D}=$ load drag reflected to the clutch shaft in Ibs．－in． units，and $\mathrm{t}_{\mathrm{s}}=$ total slip time in seconds．

Brake Energy Dissipation Chart

Use to evaluate size of a power－off brake after determining the energy dissipation．

Optimum Torque and Response

Burnishing：Burnishing is a process of running－in the mating friction surfaces of a clutch or brake to ensure the highest pos－ sible output torque．By forcing the unit to slip rotationally when energized，the mat－ ing frictional surfaces establish an optimal wear pattern within a relatively short time． This can be accomplished at the factory or during the initial stages of installed application．However，whenever possible， it is more desirable to perform the burnish－ ing process at the actual installation to ensure a consistent alignment of the fric－ tion faces．

Engagement：Coil overexcitation is a tech－ nique that makes a clutch or brake engage faster and have greatly improved starting and stopping accuracy．It is accomplished by applying over－voltage to the clutch or brake coil to reduce current buildup time， thereby reducing the magnetizing time． However，this overexcitation does not increase the torque of the unit．It simply reduces the start／stop times and fric－ tion face wear normally associated with slippage that can occur during a slower engagement time．In many applications， the reduction in start－time can be reduced significantly when using an overexcitation circuit．However，adequate coil suppres－ sion must be employed to prevent damage to the system．Please contact the factory for more detailed information．

Disengagement：When a clutch or brake is disengaged，a reverse voltage is gen－ erated in the coil．This voltage can be extremely high and could cause potential damage to the unit and the switch in the circuit．Therefore，an arc suppression circuit should be used to protect the coil and switch．When properly applied，such a circuit will not adversely affect the clutch or brake engagement time．

In most applications，a simple resistor connected in parallel with the clutch or brake coil is sufficient（Fig．I）．The resistor should be rated at six times the coil resis－ tance and approximately 25% of the coil wattage．To eliminate any added current draw，a diode may be added to the circuit as shown
（Fig．II）．If faster release times are desired， a zener diode with two times the coil voltage should be incorporated into the circuit（Fig．III）．However，the fastest dis－ engagement time is achieved with the use of an MOV（metal oxide varistor）（Fig．IV）． Conversely，if slower disengagement times are required，the use of a diode connected in parallel with the coil（Fig．V），or simply switching the A / C side of the circuit，will achieve this result．

Mounting Requirements

CS, CSC, BF, SB, FSB and PMB units
(Bearing- and flange-mounted clutches, couplings and brakes)

Bearing-Mounted Clutches - CS models

Figure 1 - Used to couple two parallel shafts. The rotor and armature are mounted on the same shaft. The armature is bearing mounted on the shaft and is free to rotate independent of the shaft. The knurled hub can press fit a gear or pulley onto the armature assembly, which, in turn, drives the parallel shaft. The case assembly is bearing mounted and is provided with anti-rotation tab.

Figure 2

Bearing-Mounted Clutch Couplings - CSC models

Figure 2 - Used to couple two inline shafts. The rotor is attached to one shaft and the armature to the other shaft. The case assembly is bearing mounted and is provided with an antirotation tab.

Figure 3

Option 1: Single output shaft

Option 2: Double output shaft

Figure 4

Flange-Mounted Brakes - BF models
Figure 3 - Used to stop or hold the armature and load to which it is attached. Units are furnished with coupling-type armature hubs. The case assembly is flange mounted for fastening to a bulkhead.

Figure 5

Permanent Magnet Brakes - RAB models

Figure 5 - XX

Glossary of Terms

Acceleration Time－The time required to change the speed of a system from the moment the clutch engages until it is stati－ cally engaged and the system is moving at a constant speed．
Actuator Limit Stop－The actuator limit stop is a restraining pin or plate on a wrap spring clutch that limits the motion of the actuator on solenoid－actuated models．

Air Gap－The physical axial space between rotor and armature that is overcome when the magnet body is energized，engaging the clutch or brake．

Anti－Backup（AB）－The anti－backup spring prevents oscillation between the clutch and brake springs on a wrap spring device and prevents the output load from revers－ ing．Anti－backup is a standard feature on CB Series clutch／brake combinations．
Anti－Overrun（AO）－The anti－overrun spring prevents overhauling loads from overrunning the input on a wrap spring． For example，anti－overrun is being applied when an eccentric output load is held at the same speed as the constant speed input．Anti－overrun is a standard feature on all CB Series products．
Anti－Rattle Feature－PMB brakes are available with an anti－rattle feature．This feature minimizes noise that occurs when the brake is released（Power On）and is running at speed．On the PMB Series， a rubber＂ 0 ＂ring is embedded in the ＂splined hub＂that applies a slight pres－ sure on the mating spline teeth，eliminating most of the rattling noise．
Anti－Rotation Slot－A slot used in clutch models to prevent rotation during opera－ tion．
Armature（assembly）－The component in a friction clutch or brake that is attracted to
the rotor or case assembly by the magnetic field created by the case assembly，affect－ ing the coupling of input and output．
Armature Disengagement Time（ADT）－The time required from the instant electrical power is removed from the actuation sys－ tem until the clutch is disengaged．ADT is also often referred to as Drop－Out Time．
Burnishing－A process of running in a clutch or a brake to reach full－potential torque． All standard catalog values of torque are indicated as burnished．Generally，any unit will become burnished during the first few cycles of normal operation at the cus－ tomer＇s site．Pre－burnishing at the factory is normally an additional operation required only by those customers needing immedi－ ate out－of－box torque prior to the normal application run－in period．
Case Assembly－The fixed component in a clutch or brake that is energized，creating a magnetic field，affecting the engagement of rotor and armature．
Control Collar－A combination of protec－ tive cover and controlling device in a wrap spring product．The control tang of the spring fits in this collar；thus by allowing or preventing rotation of this collar，the spring is allowed or not allowed to wrap tight on the hubs．Stops are molded or machined on this plastic collar and can be engaged by an external arm to control engagement．A single stop is standard and most any num－ ber up to 24 can be machined for special applications．
Control Tang－A control tang at the end（s） of the wrap spring is／are used to engage and disengage the input and output hubs on on－off，start－stop and indexing units．

Drag Torque－The torque necessary to overcome static friction in a clutch or brake．
Dust Cover－PMB brakes are available with a dust cover．The dust cover protects the braking surfaces against，dust，dirt and dripping water．This feature is made from flexible rubber and is fitted between the case and the mounting plate．
Dynamic Torque－The torque developed where there is a relative motion between mating surfaces in a friction clutch or brake．The torque varies with the speed of rotation and amount of slip．Please contact our engineers for specific data．
Engagement Time－The time required，from the moment the clutch receives the appro－ priate electrical signal，for the magnet to attract the armature and the clutch faces

Friction Clutch

are engaged．At this point the load begins to accelerate．
Frictional Torque－The torque created by friction reflected at the output of the clutch or brake．

Inertia－That property of a body to con－ tinue in the state of motion or rest in which it may be placed until acted on by some force．
Inertial Torque－The torque developed by accelerating or decelerating a given load．
Inner \＆Outer Pole（face）－Areas of the rotor that form the magnetic flux path and torque carrying friction within a clutch．In a brake the case assembly forms these poles．
Manual Release－Spring set brakes such as our PMB Series are available with a manual release．This allows the brake to be released mechanically in place of the electric coil operation．When power is removed，the brake is＂holding＂if there is no electrical power available．Simply push or pull the lever（handle）and the brake will release（not hold the load，shaft－hub will be allowed to rotate freely）．Once pressure is removed from the handle（let go），the manual release handle will go back to its original position automatically．The brake will then＂hold＂（shaft－hub will be locked once again）．
OTS／AB－If the load inertia is greater than the wrap spring tang can absorb without damage，an overtravel stop can be added to absorb a portion of the stopping torque． The anti－backup feature will prevent the output from reversing．

Glossary of Terms

Overrunning - The most basic control function performed by PSI Series wrap spring clutches in which the clutch transmits torque in one direction and allows the load to free wheel or overrun when the input drive is stopped or reversed.

Positive Engagement - An engagement that will not slip.
Radial Bearing Load - The maximum permissible load that can be applied to a clutch or brake unit at maximum velocity without incurring damage.
Residual Magnetism - The condition in electromagnets where low-level magnetism remains after the electrical current is removed.

Rotor (assembly) - The rotating component in a clutch that is generally attached (keyed or pinned) to the input (motor) shaft.
Split Cam - A sleeve design incorporated in all standard and super CB-5, CB-6, CB-7, CB-8, and SAC-5 \& SAC-6 units. This design makes setting the spring differential (overtravel) simple. With the one-piece construction (older style), the relative position of the brake and drive springs are set together. The split cam design allows the user to set the position of the brake spring by just wrapping the spring in the direction opposite of the clutch input rotation.
Spring Differential - Spring differential is the positional relationship of the drive spring to the brake spring. Correctly adjusted spring differential is imperative for proper clutch/ brake performance. The spring differential is factory set.

Start-Stop Clutch - This control function is a basic engage-disengage operation resulting in random load-stopping positions. Both SP and PSI Series (mechanically actuated) clutches can be used as start-stop clutches, as can the SAC, BIMAC, MAC and DL.
Start-Stop Clutches and Brakes - Most wrap spring clutches and brakes can be configured to perform the start-stop control function in which loads are started and stopped accurately.

Static Torque - In wrap springs this is defined as the maximum torque that can be applied statically with the spring completely wrapped down before damage occurs. In friction devices this is the torque level beyond which the clutch or brake will slip or overrun.

Stop Collar - A combination cover and control device on a wrap spring device that has detent positions to enable the clutch or brake to be engaged or disengaged. Standard stop collars have one stop per revolution. Specials are available with as many as 24 stops per revolution.
Time To Engagement (TTE) - The time required from the instant the actuation system is signaled until the clutch is engaged. At this point the system begins to accelerate. Time to Engagement is also often referred to as Pull-In Time.
Time To Speed (TTS) - The time required from the instant the actuation system is signaled until the output reaches the input RPM. Time to Speed is the equivalent of the sum of engagement time and acceleration time.
Time to Zero - The time required to fully disengage the motor from its load, thus allowing the load to drop to zero speed. Note: Factors such as system friction and inertia naturally play an important role in both of these critical measurements.
Torque - The product of the force and the perpendicular distance from its line of action to the instantaneous center of rotation, generally expressed in Ibs.-in. or Nm. Static torque occurs when there is no relative movement or slippage between mating friction surfaces. Fully engaged clutches, or a brake holding a load are examples of static torque. Dynamic torque is developed when there is relative motion between mating friction surfaces.
Torque Adjustment Feature - Our PMB Series brakes are available with a Torque Adjustment Feature. This feature allows the torque to be adjusted down from maximum holding force (Static Torque). This feature is in the form of a threaded "spanner-type nut"; to turn the nut, a simple spanner wrench may be used. This feature relieves the "tension" on the springs, therefore reducing the holding torque. This feature allows for a "softer" stop or less holding force (torque).
Total Cycle Time - Sum of the device timeon and time-off as measured in seconds. Duty cycle is the percentage of total cycle time that a clutch or brake is engaged. For example, 5 seconds on $/ 5$ seconds off corresponds to a 50% duty cycle and a 10 second cycle time. Cycle rate is expressed in cycles per minute (CPM), as the number of times the clutch or brake is engaged and disengaged during a one minute period.
Undercut - A process of cutting back one of the pole surfaces in relation to the other.

Generally done to reduce any residual magnetism or to derate a device. Also a term used to describe the recessing of friction material so as to affect a more efficient burnished condition.

Wrap Angle - The number of degrees a spring tang must rotate in order to engage or disengage a load in a wrap spring device.
Wrap Spring - High tensile strength coiled wire, which transmits a substantial amount of torque when wrapped tightly around two hubs.

Application Definitions

Heavy Duty is defined as one where the clutch is engaged in concert with the movement of the load. Example: a paper feed clutch that is engaged each time that a sheet of paper is introduced into the print path.

Light to Medium Duty is defined as one where running speed is achieved in the absence of loading (or the clutch is engaged at zero speed). Example: a machine tool head that is engaged and at speed before the cutting of metal begins.

> A Dynamic Clutch application is another way of defining "Heavy Duty". Factors such as inertia, energy dissipation and life become critical.

A Static Clutch application is defined as one where the clutch is engaged at zero speed. Example: a tooth clutch that is used to couple and position an X-ray machine head.

A Dynamic Brake application is defined as one where the brake is engaged to actually stop the load. Again, inertia, energy dissipation and life must be well defined. Example: an emergency stop of a motor that is running at speed, particularly if under load.

A Static Brake application is defined as one where the brake is engaged after the system has come to rest. Example: a holding brake on a Z -axis to hold the load in place in the event of a power failure.

Conversion Chart

Listed Alphabetically

To Convert From	To	Multiply By	To Convert From	To	Multiply By	To Convert From	To	Multiply By
cm	feet	3.281×10^{-2}	(lbs.-ft.)(RPM)	Watts	. 142	Nm	oz.-in.	141.69
cm	inches	. 3937	lbs.-ft. ${ }^{2}$	$\mathrm{gm}-\mathrm{cm}^{2}$	4.214×10^{5}	Nm²	lbs.-in. ${ }^{2}$	348.47
degrees/sec	RPM	. 1667	lbs. $-\mathrm{ft}{ }^{2}$	lbs.-in. ${ }^{2}$	144	Nm-sec ${ }^{2}$	lbs.-in. ${ }^{2}$	3417
degrees/sec	$\mathrm{rad} / \mathrm{sec}$	1.745×10^{-2}	lbs. $-\mathrm{ft}{ }^{2}$	$\begin{aligned} & \text { lbs.-in.- } \\ & \text { sec }^{2} \end{aligned}$. 37272	Newtons	pounds	. 225
feet	cm	30.48	lbs.-ft. ${ }^{2}$	oz.-in. ${ }^{2}$	2304	0z.-in.	lbs.-ft.	5.208×10^{-3}
ft.-lbs./min	Watts	2.259×10^{-2}	lbs.-ft. ${ }^{2}$	$\begin{aligned} & \text { oz.-in.- } \\ & \text { sec }^{2} \end{aligned}$	5.969	0z.-in.	lbs.-in.	6.25×10^{-2}
g-cm	lbs.-ft.	7.233×10^{-5}	lbs.-in.	$\mathrm{g}-\mathrm{cm}$	165960	(oz.-in.)(RPM)	HP	9.917×10^{-7}
g-cm	0z.-in.	1.389×10^{-2}	lbs.-in.	$\mathrm{kg}-\mathrm{cm}$	165.96	(oz.-in.)(RPM)	Watts	7.395×10^{-4}
$\mathrm{g}-\mathrm{cm}^{2}$	lbs.-in. ${ }^{2}$	3.417×10^{-4}	lbs.-in.	kg-m	1.6596	oz.-in. ${ }^{2}$	$\mathrm{gm}-\mathrm{cm}^{2}$	182.9
$\mathrm{g}-\mathrm{cm}^{2}$	lbs. $\mathrm{ft} .^{2}$	2.373×10^{-6}	lbs.-in.	lbs.-ft.	. 083	oz.-in. ${ }^{2}$	lbs. $\mathrm{ft}{ }^{2}$	4.340×10^{-4}
$\mathrm{gm}-\mathrm{cm}^{2}$	oz.-in. ${ }^{2}$	5.467×10^{-3}	lbs.-in.	Nm	. 113	oz.-in. ${ }^{2}$	lbs.-in. ${ }^{2}$	6.25×10^{-2}
horsepower	ft.lbs./min	33,000	lbs.-in.	0z.-in.	16	oz.-in. ${ }^{2}$	0z.-in.-sec ${ }^{2}$	2.590×10^{-3}
horsepower	watts	7.457×10^{-2}	(lbs.-in.)(RPM)	HP	1.587×10^{-5}	oz.-in.-sec ${ }^{2}$	0z.-in. ${ }^{2}$	3.8609×10^{-2}
inches	cm	2.540	(lbs.-in.)(RPM)	Watts	. 0118	oz.-in.-sec ${ }^{2}$	lbs.-in. ${ }^{2}$	24.125
$\mathrm{kg}-\mathrm{m}$	lbs.-ft.	7.233	lbs.-in. ${ }^{2}$	$\mathrm{kg}-\mathrm{cm}^{2}$	2.926	RPM	rad/sec	. 1047
$\mathrm{kg}-\mathrm{m}$	lbs.-in.	. 6026	lbs.-in. ${ }^{2}$	Nm ${ }^{2}$	2.870×10^{-3}	radians	degrees	57.3
$\mathrm{kg}-\mathrm{cm}^{2}$	lbs.-in. ${ }^{2}$	3.417×10^{-1}	lbs.-in. ${ }^{2}$	$\mathrm{kg}-\mathrm{m}^{2}$	2.9265×10^{-4}	$\mathrm{rad} / \mathrm{sec}$	RPM	9.549
$\mathrm{kg}-\mathrm{cm}-\mathrm{sec}^{2}$	lbs.-in. ${ }^{2}$	335.1	lbs.-in. ${ }^{2}$	$\begin{aligned} & \text { lbs.-in.- } \\ & \text { sec }^{2} \end{aligned}$	2.590×10^{-3}	revolutions	radians	6.283
$\mathrm{kg}-\mathrm{m}^{2}$	lbs. $\mathrm{ft} .^{2}$	23.73	lbs.-in. ${ }^{2}$	lbs. $\mathrm{ft} .^{2}$	6.944×10^{-2}	revolutions/min.	degrees/sec	6
$\mathrm{kg}-\mathrm{m}^{2}$	lbs.-in. ${ }^{2}$	3417	lbs.-in. ${ }^{2}$	oz.-in. ${ }^{2}$	16	square-inches	square-mm	645.2
kilograms	pounds	2.205	meters	millimeters	1000	temp. $\left({ }^{\circ} \mathrm{C}\right)+17.78$	temp. (${ }^{\circ} \mathrm{F}$)	1.8
lbs.-ft.	lbs.-in.	12	millimeters	inches	3.937×10^{-2}	temp. (${ }^{\circ} \mathrm{F}$) -32	temp. $\left({ }^{\circ} \mathrm{C}\right)$. 555
lbs. ft .	0z.-in.	192	Nm	lbs.-ft.	. 738	Watts	ft.-lbs./min	44.2
(lbs.-ft.)(RPM)	HP	1.904×10^{-4}	Nm	lbs.-in.	8.85	Watts	HP	1.341×10^{-3}

Notes
\qquad

Deltran clutches and brakes Custom engineered for your market

Automotive liftgate systems require a unique, high-volume solution to switch between automatic and manual operation.

Deltran custom-engineered clutch.
We manufacture complete assemblies and subassemblies for many of our customers with special needs in various markets.

MEDICAL
SB Power-off Brake
Holds table in position

PACKAGING
Wrap Spring CB-6
Moves product
ELECTRIC VEHICLE
PMB Power-off Brake
Brake holds cart
AGRICULTURE
Wrap Sprng SAC-6
Turns seeder on and off

ELECTRONIC ASSEMBLY
Wrap Spring CB-2
Pick and place
OFFICE AUTOMATION
Wrap Spring DL-33
Paper feed

AEROSPACE \& DEFENSE
TCR-19 Tooth Clutch
Environmental control
AUTOMOTIVE
TC-13A Tooth Clutch
Power-sliding door mechanism

USA, CANADA and MEXICO
Thomson
203A West Rock Road
Radford, VA 24141, USA
Phone: 1-540-633-3549
Fax: 1-540-633-0294
E-mail: thomson@thomsonlinear.com
Literature: literature.thomsonlinear.com

EUROPE

United Kingdom
Thomson
Office 9, The Barns
Caddsdown Business Park
Bideford, Devon, EX39 3BT
Phone: +44 (0) 1271334500
E-mail: sales.uk@thomsonlinear.com

Germany

Thomson
Nürtinger Straße 70
72649 Wolfschlugen
Phone: +49 (0) 7022504403
Fax: +49 (0) 7022504405
E-mail: sales.germany@thomsonlinear.com

France

Thomson
Phone: +33 (0) 243500330
Fax: +33 (0) 243500339
E-mail: sales.france@thomsonlinear.com

Italy

Thomson
Largo Brughetti
20030 Bovisio Masciago
Phone: +39 0362594260
Fax: +39 0362594263
E-mail: sales.italy@thomsonlinear.com
Spain
Thomson
E-mail: sales.esm@thomsonlinear.com

Sweden

Thomson
Estridsväg 10
29109 Kristianstad
Phone: +46 (0) 44246700
Fax: +46 (0) 44244085
E-mail: sales.scandinavia@thomsonlinear.com

ASIA

Asia Pacific

Thomson
E-mail: sales.apac@thomsonlinear.com

China

Thomson
Rm 2205, Scitech Tower
22 Jianguomen Wai Street
Beijing 100004
Phone: +86 4006661802
Fax: +86 1065150263
E-mail: sales.china@thomsonlinear.com

India

Thomson
c/o CNRG Energy India Pvt. Ltd.
Unit No. FF A 07
Art Guild House, A Wing, 1st Floor, L.B.S Marg
Kurla - West, Mumbai - 400070 India
Phone: +0091 2262495043
Email: sales.india@thomsonlinear.com

Japan

Thomson
Minami-Kaneden 2-12-23, Suita
Osaka 564-0044 Japan
Phone: +81-6-6386-8001
Fax: +81-6-6386-5022
E-mail: csjapan@scgap.com

South Korea

Thomson ROA
704 ASEM Tower (Samsung-dong)
517 Yeongdong-daero, Gangnam-gu
Seoul, S. Korea, Zip Code: 06164
Phone: +82 269175048 \& 5049
Fax: +82 25281456 \& 1457
E-mail: sales.korea@thomsonlinear.com

SOUTH AMERICA

Brazil

Thomson
Av. Tamboré, 1077
Barueri, SP - 06460-000
Phone: +55 11 3616-0191
Fax: +55 1136111982
E-mail: sales.brasil@thomsonlinear.com

[^0]: *For RPM ranges on specific models, see selection charts on page 17.

[^1]: *Consult Factory

[^2]: * Special Order

[^3]: * Part numbers in () are metric

[^4]: * Part numbers in () are metric

[^5]: * Special Order

[^6]: * Part numbers in () are metric

[^7]: Consult factory for complete information on non-standard stop collars.

[^8]: \dagger Angular movement is determined with 25 lbs .-in. of torque applied to output.
 *Or less than 1.15 times the output shaft load, whichever is greater

[^9]: - Initial working air gap at installation shall be $.004 / 009$.
 - Static torque values above are burnished.
 - Customer shall maintain a loose pin fit through the anti-rotation tab to prevent pre-loading of bearings

[^10]: $(-)$ denotes metric equivalents. Specifications subject to change without notice.

[^11]: * See dimension tables for appropriate bore sizes available for each frame size.
 ** Manual release is not available for size 15 brake.

